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In the process of assets selection and their allocation to the investment portfolio the most impor-
tant factor issue thing is the accurate evaluation of the volatility of the return rate. In order to achieve
stable and accurate estimates of parameters for contaminated multivariate normal distributions the
robust estimators are required. In this paper we used some of the robust estimators to selection the
optimal investment portfolios. The main goal of this paper was the comparative analysis of generated
investment portfolios with respect to chosen robust estimation methods**.
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1. Introduction

Nowadays the portfolio analysis is one of the best known and most widely used
methods of making investment decisions in capital markets. Following the seminar
work by Markowitz (1952) the portfolio selection problem is usually formalized as
a mean-risk bicriterial optimization problem where asset expected (mean) return is
maximized and some risk measure is minimized.

The classical portfolio theory assumes that the asset return distribution is a multi-
variate normal. But it is commonly known that leptokurtotic tails of data distribution
and contamination of data with outliers are the two features which very often charac-
terize the financial time series. Consequently, in the mean-risk model such parameters
as the risk measured usually by standard deviation or variance and the sample mean
are quite sensitive to estimation error.
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Robust estimators are required to achieve stable and accurate results in case of
contaminated data. Numerous of robust estimators are presented and analyzed in lit-
erature, so we want to consider some of them in the process of asset selection and
their allocation to the investment portfolio.

The main goal of this paper is the classification of generated investment portfolios
with respect to chosen robust estimators. Selected methods of cluster analysis were
used for the classification. We have tried to isolate homogeneous groups of similar
portfolios as well as reveal the relations between these portfolios.

The authors also try to show that applying robust estimation in portfolio analysis
ensures better method for effective investment decision-making than the classical
portfolio analysis.

The paper is organized as follows. In Section 2, we give a brief overview of the
minimum-risk portfolio selection problem. In Section 3 we characterize some robust
estimators of risk. In Section 4 we compare and classify portfolios on the basis of
various robust estimators.

2. The traditional approach to portfolio optimization

The fundamental goal of the portfolio theory is to optimally allocate investments
to different assets. Mean-variance optimization is a quantitative tool, which allows
making this allocation by considering the trade-off between risk and return. However,
since the covariance matrix can be estimated much more precisely than the expected
returns, the minimum variance portfolios (MV) are usually more stable for the com-
position of the minimum variance portfolio depends only on the covariance matrix of
asset returns.

The classical Markowitz optimization problem which constitutes the main theo-
retical background for the modern portfolio theory is widely described and analyzed
in literature, so we will just briefly recall the minimum-variance problem.

For given n risky assets the minimum-variance portfolio (MV) is the portfolio of
assets that minimizes the risk measured by the variance of portfolio return for a given
covariance matrix C. It is a solution to the following problem:

Cxx
nxxx

Τ
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Xxts ∈..

where nx ℜ∈ is the vector of portfolio weights.
The simplest non-empty and bounded set X of feasible portfolios are usually con-

sidered as
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However, the commonly accepted approach to implementation of the mean-risk model
is based on usage of specified lower bound 0µ  for expected returns which results in the
following minimum risk bounded problem (Ogryczak and Krzemieniowski (2003)):

},)(:)(min{ 0 XxxxR ∈≥ µµ (2)

where R(x) is the risk measure (risk is measured by volatility of returns).
Various efficient portfolios can be derived by solving problem (2) with changing

]max,min[
,...,1,...,10 iniini

µµµ
==

∈ 1. The efficient frontier is then bounded by the minimum risk

portfolio defined as a solution of )(min xR
Xx∈

.

This approach is widely accepted in practice and provides a clear understanding of
investor’s preferences. Therefore, we also use the bounding approach in our compari-
son of portfolios.

3. Robust scale estimators

Since the pioneer works of Tukey (1960), Huber (1964) and Hampel (1971) robust
statistics are nowadays widely used and new or improved tools are continuously pro-
posed. The aim of robust statistics is to provide tools not only to assess the robustness
properties of the classical procedures, but also to produce new estimators and tests
that are robust to model deviations.

The breakdown point and the influence function are the most important measures of
robustness. But to evaluate the robust estimators the issue of efficiency and of equivariance
concepts is very significant (if the estimator is affected by location or scale transforma-
tion). So far statisticians have developed various sorts of robust statistical estimators.

Therefore we give below a brief presentation of promising robust estimators of
volatility and covariance matrix. We concentrate especially on estimators with i) high
breakdown point (near 50%, but for realistic application 20% is satisfactory), ii)
property of affine equivariance2 and iii) fast algorithm to compute them.
                                                     

1 For each security },...,1{ nj∈  its rate of return is represent by a random variable Pj with a given
mean }.{ jj PE=µ

2 Location and scatter estimators p
nT ℜ∈  and )( pPDSCn ∈  are affine equivariant if and only if

bXTAbAXT nn +⋅=+ )()(  and ')()( AXCAbAXC n
n

n
n ⋅⋅=+  for any vector pb ℜ∈ and any non-singular

pp×  matrix A.
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Some simple scale estimators
The scale of )...,,( 1 nxxX = 3 is typically estimated by standard deviation

∑
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which is very efficient for the assumed normal distribution but highly sensitive to devia-
tion from normality in a sample or empirical distribution. Replacing squares by absolute
values and removing the square root leads to the sometimes-used average distance to the
average (ADA). But more popular is average distance to the median (ADM)

∑
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n

i
i XxX

1

))(med()(ADM . (4)

The most commonly used robust estimator is median absolute deviation about me-
dian (the remaining average in (4) is replaced by median) (Hampel, 1974)







 −= )(medmed4286.1MAD jjiin xxa . (5)

The MAD has a simple explicit formula, needs little computation time with 50%
breakdown point. However, the MAD has its limitations: low efficiency for data
(37%) and an implicit assumption of symmetry.

While the MAD is a location-based estimator as it measures the deviations of the
observations from a robust location estimate, the interquartile range is a location-free
estimator and is given by

)( )4/()4/3( nnn XXbIQR −= , (6)

where )4/3( nX  and )4/(nX  denote the 75th and the 25th percentiles. At symmetric dis-
tributions, the IQR has the same influence function as the MAD. But its breakdown
point is only 25%. Location-free estimators have the advantage of not implicitly rely-
ing on symmetric noise distribution.

Rousseeuw and Croux (1993) proposed two statistics Sn and Qn as alternatives to
the MAD. The first is

||medmed1926.1
,...,1 jiijninn xxcS −=

≠=
. (7)

It has significantly higher normal efficiency (58%) and it does not depend on
symmetry.

                                                     
3 The mean of X is denoted by x .
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The second robust scale estimator Qn has significantly higher normal efficiency
(82%) and it also does not depend on symmetry

)(};||{2219.2 kjinn jixxdQ ≤−= , (8)
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The constants an, bn, cn, dn are correction factors that can be chosen depending on
the sample size to achieve unbiasedness. Note that Sn and Qn estimators do not need
any location estimate.

Some of the most popular robust estimators are M-estimators (Huber, 1964). We
consider the M-estimator of scale nS′ , which is defined for some chosen c > 0 as
a solution of

βρ =

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
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where ))(( uE cρβ Φ=  and

cρ  is an even function, 0)0( =cρ , non-decreasing on ),0[ +∞ , differentiable a.e.
Tn is auxiliary location parameter calculated usually as med(X).
The function ρ  is known as the loss function and “helps” in reducing the effect of

outliers. Different ),,( nn STxρ  yields different M-estimators4 including the standard
maximum likelihood estimators.

In our simulation study we use the logistic function due to its good performance in
practice



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1
1

log +
−
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x
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eψ  and 1)( =∞ρ .

Since isticlogψ  is continuous and increases strictly for positive arguments the solu-
tion Sn to (9) always exists and is unique. M-estimator needs to be calculated itera-
                                                     

4 For example MAD is robust M-estimator of scale for 
2
1=β , )()( cuIuc >=ρ  and

6745.0
4
31 =




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Φ= −c .
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tively, starting from the initial scale estimate )(MAD)0( XSn = and the iteration steps
are as follows
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until converegence (Werner, 2003).
Another class of estimators related to M-estimators is the S-estimators (Rousseeuw

and Yohai, 1984) which are particularly attractive. An important distinction between
these two types of estimators is that S-estimators provide simultaneous estimates of
both location and scale, while M-estimators produce estimates for only one of these
quantities. The S-estimate of location and scale is defined as location estimate T and
positive-definite symmetric matrix C that jointly solve

||min C

KTxCTx
n
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where K is a tuning constant5. The above equation is often compactly written as

Kd
n

n

i
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)(1 ρ

where di is a robust version of the Mahalanobis distance.
To obtain robust estimates the loss function ρ  must satisfy the following condi-

tions: i) ρ  is symmetric, has a continuous derivative ψ  and 0)0( =ρ ; ii) there must
exist c > 0 such that ρ  strictly increases on ],0[ c  and constant on ),[ ∞c ; iii) )(yψ′

and 
y
yyu )()( ψ

=  are bounded and continuous and )(yu  is non-increasing in

),0[ +∞ 6. If loss function ρ  satisfies these conditions the S-estimator is asymptoti-
cally normal, consistent and has bounded influence function (Lopuhaä, 1989).

                                                     
5 K = 6 or K = 9, see Hoaglin, Mosteller, Tukey [3] and Kafadar [5].
6 Tukey’s beweight function satisfies the above mentioned conditons and it is given by
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According to many other authors in section 4 we have chosen Tukey’s beweight
function as ρ  for the simulation study.

The next robust scale estimator for heavy-tailed symmetric distribution is an
A-estimator presented by Lax in 1985. For given n independent and identically dis-
tributed observations nXX ...,,1  the A-estimator of scale with biweight function is
given by
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where:
M is an M-estimator of location,
s0 is generally taken to be the median absolute deviation of the Xt from the sample

median,
c – positive constant7 that depends on the choice of auxiliary scale estimate

00 >s .
The next class of estimators are t-estimators of volatility which were recom-

mended by Tchernitser and Rubisov (2005). The t-estimator for variance/volatility
takes the following form:
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T-estimators based on t-distribution require iterative procedures and iteratives al-
ways starting with an estimate 2

0σ̂ , the MAD would be a natural choice in this case.
For v = 5 the t-estimator performs best.

4. Simulation results

The present section is devoted to an analysis and classification of generated in-
vestment portfolios with respect to chosen robust estimation.

                                                     
7 According to John Randal Peter Thomson and Martin Lally [9] the A-estimators perform best with

c = 10 or c = 11 than the value c = 9 found by Lax.
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For our experiment we use market indexes: WIG 20, WIRR and MIDWIG of the
Polish Stock Exchange Members. WIG 20 index is based on the value of a portfolio
of the 20 largest and most liquid companies from the main market. Investments funds
and more than 5 companies from one sector (based on the exchange sector classifica-
tion) cannot participate in the WIG20 index. The MIDWIG index covers maximum 40
mid-size companies listed on the main market. The MIDWIG index excludes compa-
nies from the WIG20 index and investments funds. And the WIRR index is the index
for the smallest companies of the main market.

We have generated 1000 weekly return following multivariate normal distribution
N(µ, σ), where parameters µ and σ were estimated weekly based on the returns of
each index WIG 20, WIRR, MIDWIG. For this purpose we used the Monte Carlo
simulation. In order to reduce estimation errors we have chosen a weekly periodicity
for the rates of return (Simaan, 1997).

We have considered three types of database: without contamination, next we used
2.5 and 5 percentage contamination level. The following two types of contamination
have been studied:

i) Substitutive contamination: random replacement of 2.5% of the asset returns by
a specific value. This value was calculated based on the estimator of expected return of
the asset return plus three times the standard deviation of the corresponding asset return.

ii) Point mass multiplicative contamination: random multiplication of 5% of the
asset returns by a specific value – three times the estimated standard deviation. The
contamination occurs for each of the three series at the same data points.

For each dataset we have established the risk estimators described in the previous
section (see Table 1).

Table 1.  Risk estimators calculated for three datasets

Amount
of

contami-
nation

indexes Standard
dev. IQR MAD A-

-estimator
t-

-estimator Qn Sn ADM S-
-estimator

M-
-estimator

WIRR 0,0287 0,0284 0,0283 0,0286 0,0372 0,0227 0,0285 0,0304 0,0295 0,0281
WIG20 0,0389 0,0439 0,0400 0,0391 0,0423 0,0314 0,0314 0,0439 0,0414 0,04000%

MIDWIG 0,0232 0,0223 0,0239 0,0233 0,0248 0,0185 0,0234 0,0248 0,0240 0,0233
WIRR 0,0399 0,0296 0,0293 0,0316 0,0385 0,0247 0,0300 0,0296 0,0296 0,0292
WIG20 0,0490 0,0454 0,0411 0,0428 0,0489 0,0342 0,0410 0,0401 0,0413 0,04092.5%

MIDWIG 0,0289 0,0227 0,0243 0,0257 0,0261 0,0204 0,0243 0,0240 0,0238 0,0225
WIRR 0,0402 0,0304 0,0299 0,0353 0,0394 0,0276 0,0315 0,0301 0,0323 0,0301
WIG20 0,0564 0,0467 0,0421 0,0429 0,0462 0,0389 0,0426 0,0433 0,0456 0,03995%

MIDWIG 0,0346 0,0230 0,0246 0,0285 0,0271 0,0229 0,0252 0,0259 0,0258 0,0276

S o u r c e: Own calculations.

After analysing the results we observed that MAD and Qn estimators offer a stable
estimate of volatilities. S-estimator and ADM also offer quite stable results. Whereas,
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together with increasing the percentage of contamination, the standard deviation
changes substantially.

In the next stage we solved the minimum risk model (1) changing every time the
estimators of risk. The tables 2–4 present optimal minimum-risk portfolios.

Table 2. Shares of optimal portfolios for dataset without contamination

risk estimator WIRR WIG20 MIDWIG portfolio risk
standard deviation 32,39% 17,61% 50,00% 1,69%
IQR 35,37% 14,63% 50,00% 1,69%
MAD 34,32% 17,12% 48,57% 1,72%
A-estimator 32,58% 17,48% 49,94% 1,70%
t-estimator 27,99% 22,01% 50,00% 1,93%
Qn 32,83% 17,17% 50,00% 1,35%
Sn 29,96% 25,16% 44,88% 1,62%
ADM 33,84% 16,16% 50,00% 1,82%
S-estimator 33,17% 16,83% 50,00% 1,76%
M-estimator 33,74% 16,61% 49,65% 1,70%

S o u r c e: Own calculations.

Table 3.  Shares of optimal portfolios for dataset with 2.5% of contamination

risk estimator WIRR WIG20 MIDWIG portfolio risk
standard deviation 29,90% 20,10% 50,00% 2,18%
IQR 34,99% 15,01% 50,00% 1,73%
MAD 34,00% 17,47% 48,53% 1,76%
A-estimator 32,89% 18,15% 48,96% 1,87%
t-estimator 30,71% 19,29% 50,00% 2,06%
Qn 33,67% 17,77% 48,56% 1,48%
Sn 32,84% 17,79% 49,37% 1,77%
ADM 32,78% 18,08% 49,15% 1,75%
S-estimator 32,91% 17,09% 50,00% 1,75%
M-estimator 32,99% 17,01% 50,00% 1,69%

S o u r c e: Own calculations.

Table 4. Shares of optimal portfolios for dataset with 5% of contamination

risk estimator WIRR WIG20 MIDWIG portfolio risk
standard deviation 35,18% 18,77% 46,04% 2,38%
IQR 34,52% 15,48% 50,00% 1,72%
MAD 33,74% 17,82% 48,44% 1,73%
A-estimator 31,32% 22,07% 46,61% 1,97%
t-estimator 28,47% 21,53% 50,00% 2,02%
Qn 33,96% 17,98% 48,05% 1,60%
Sn 32,30% 18,53% 49,17% 1,78%
ADM 35,43% 18,02% 46,55% 1,79%
S-estimator 32,69% 17,31% 50,00% 1,84%
M-estimator 36,39% 21,63% 41,99% 1,81%

S o u r c e: Own calculations.
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From the result analysis of Tables 2–4 some conclusions may be drawn:
• portfolios based on Qn, MAD, IQR and S-estimators have the most stable

weights in the presence of contamination of data,
• portfolios based on standard deviation are the most sensitive to the presence of

contamination,
• changes in MAD-risk and IQR-risk portfolios weights are practically indistin-

guishable in the cases with 0%, 2.5% and 5% contamination.
We have also solved problem (2) for each level of required rate of return as an ad-

ditional insight into the comparison of portfolios. The efficient frontiers are presented
in Figure 1.
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We can conclude that model (2) gives the similar results
• with standard deviation, MAD, IQR and A-, M-, S-estimators in the case of Fig-

ure A,
• with Sn, MAD, IQR, M-, S-estimators in the case of the second figure and
• with MAD, IQR, ADM, Sn, M-, S-estimators in the case of the third figure.
From an investor’s point of view it is also interesting to note that portfolio based

on Qn estimator might be classified as the “risk averse” and portfolio based on
t-estimator as “risk seeking”. Also, in the case of 2.5% and 5% of contamination the
most risky portfolio is the SD-risk portfolio.

Finally, we have tried to classify the generated investment portfolios with respect
to chosen robust estimators. The results are shown as tree diagrams.

tree diagram, complete linkage
euclidean distance

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

linkage distance

P Sn
P test
P IQR

P Mest
P ADM
P MAD
P Sest

P Qn
P Aest

P SD

Fig. 2. Tree diagram portfolios based on robust estimators in the case of uncontaminated data

tree diagram, complete linkage
euclidean distance

0 1 2 3 4 5 6

linkage distance

P Sn
P ADM
P Aest
P Mest
P Sest

P Qn
P MAD
P IQR
P test
P SD

Fig. 3. Tree diagram portfolios based on robust estimators in the case of  2.5% contamination

One may notice homogeneous groups of similar portfolios. Figure 1 presents 4
clusters. Portfolios based on standard deviation, Qn and A-and S-estimator. MAD,
ADM, M-estimator belong to the second group. Sn and t-estimator form the third
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group. And only IQR-risk portfolio forms the last group. Figure 2 presents 4 clus-
ters of portfolios: group 1 – portfolios based on standard deviation and t-estimator,
group 2 – portfolios based A-estimator, ADM and Sn, group 3 – portfolios based on
MAD-estimator, Qn, S and M-estimator, group 4 – portfolios based on IQR estima-
tor. In Figure 3 there are also 4 clusters: group 1 – portfolios based on standard
deviation, M-estimator, group 2 – portfolios based on IQR, Qn, ADM and MAD-
estimator, group 3 – portfolios based on Sn, S-estimator, group 4 – portfolios based
on –-estimator and t-estimator.

Tree diagram, complete linkage
euclidean distance

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5

linkage distance

P test
P Aest
P Sest

P Sn
P ADM

P Qn
P MAD
P IQR

P Mest
P SD

Fig. 4. Tree diagram portfolios based on robust estimators in the case of 5% contamination

5. Conclusions

Robust estimators are the powerful tools for stable evaluation of statistical pa-
rameters. In the process of assets selection and their allocation to the investment port-
folio the most important is the accurate evaluation of the volatility of the return rate,
covariance matrix or correlations.

If volatility is a measure of risk, then MAD and Qn but also S- and ADM estimators are
seemed to be the most effective among analyzed volatility estimators. In this paper the
homogenous groups of similar portfolios have been obtained as the result of classification.
Portfolios based on Qn and MAD estimators of risk have the most stable weights in the
presence of contaminated data, the portfolio based on Qn estimator might be classified as
the “risk averse” and the portfolio based on t-estimator as “risk seeking”. Also, in the case
of 2.5% and 5% of contamination the most risky portfolio is SD-risk portfolio.

The Achieved results can be used in the investment decisions-making process.
These promising results show a need for comprehensive experimental studies analyz-
ing practical performances of the enhanced risk measures.
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Decyzje inwestycyjne i klasyfikacja portfeli inwestycyjnych
w oparciu o odporne metody estymacji

Zbiory danych finansowych bardzo często charakteryzują się występowaniem wartości wyraźnie róż-
niących się od pozostałych tzw. obserwacji odstających, natomiast rozkład analizowanych danych często
jest rozkładem leptokurtycznym z grubymi ogonami. Brak normalności rozkładu oraz występowanie
obserwacji odstających w konsekwencji powoduje, że szacowania przy użyciu klasycznych estymatorów
są nieefektywne. W tym przypadku zastosowanie znajdują estymatory odporne.

W procesie selekcji aktywów i ich alokacji do portfela inwestycyjnego istotną kwestią jest prawidło-
wa ocena zmienności stóp zwrotu. Dlatego w niniejszej pracy wykorzystamy szereg odpornych estymato-
rów zmienności do wyznaczenia optymalnych portfeli inwestycyjnych – portfeli o najmniejszym ryzyku
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w skład, których wejdą aktywa będące w obrocie na Giełdzie Papierów Wartościowych w Polsce. Głów-
nym celem pracy jest analiza porównawcza oraz klasyfikacja otrzymanych portfeli inwestycyjnych ze
względu na wybrane metody estymacji.

Słowa kluczowe: decyzje inwestycyjne, estymatory odporne, klasyfikacja portfeli, analiza skupień


