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ESTIMATION OF VALUE AT RISK:
EXTREME VALUE AND ROBUST APPROACHES

The large portfolios of traded assets held by many financial institutions have made the measure-
ment of market risk a necessity. In practice, VaR measures are computed for several holding periods
and confidence levels. A key issue in implementing VaR and related risk measures is to obtain accu-
rate estimates for the tails of the conditional profit and loss distribution at the relevant horizons.

VaR forecasts can be heavily affected by a few influential points, especially when long forecast
horizons are considered. Robustness can be enhanced by fitting a generalized Pareto distribution to
the tails of the distribution of the residual and sampling tail residuals from this density. However, to
ensure a sufficiently large breakdown point for the estimator of the generalized Pareto tails, robust
estimation is needed (see Dell’Aquila, Ronnchetti, 2006). The aim of the paper is to compare selected
approaches to computing Value at Risk. We consider classical and robust conditional (GARCH) and
unconditional (EVT) semi-nonparametric models where tail events are modeled using the general-
ized Pareto distribution. We wish to answer the question of whether the robust semi-nonparametric
procedure generates more accurate VaRs than the classical approach does.
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1. Introduction

Following the increase in financial uncertainty in the 90’s, which resulted in fa-
mous financial disasters, there has been intensive research from financial institutions,
regulators and academics to develop improved, sophisticated models for the estimation
of market risk. The most well known risk measure is Value-at-Risk (VaR). A key is-
sue in implementing VaR and related risk measures is to obtain accurate estimates for
the tails of the conditional profit and loss distribution at the relevant horizons. How-
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ever, traditional value-at-risk models based on the assumption of iid-ness and normal-
ity are not able to capture the extremes in emerging markets, where high volatility and
the nonlinear behavior of returns are observed. This fact has led to various alternative
strategies for VaR prediction.

Extreme value theory (EVT) can be useful in defining supplementary risk meas-
ures, because it provides more appropriate distributions to fit extreme events. Unlike
VaR methods, no assumptions are made about the nature of the original distribution of
all the observations. This theory emphasises the modeling of rare events, mostly
events with a low frequency but a high impact. Common practice is to characterize the
size and frequency of such extreme events mainly by the extreme value index. The
most prominent extreme value methods are constructed using efficient maximum like-
lihood estimators based on specific parametric models, which are fitted to excesses
over large thresholds. Maximum likelihood estimators, however, are often not very
robust, which makes them sensitive to a few particular observations. Even in extreme
value statistics, where the most extreme data usually receive most attention, this may
constitute a serious problem.

Robust methods for extreme values have already been discussed in recent lit-
erature. For example, BRAZAUSKAS and SERFLING [2] consider robust estimation in
the context of strict Pareto distributions. PENG and WELSH [16] and JUÁREZ and
SCHUCANY [11] derived robust estimation methods for the case where the observa-
tions follow a generalized extreme value distribution, a generalized Pareto distribu-
tion, thin or heavy tailed. Also MANCINI and TROJANI [13] proposed a class of ro-
bust semiparametric bootstrap methods to estimate conditional predictive
distributions of asset returns in GARCH-type volatility models with applications in
VaR calculation.

The objectives of robust statistical analysis and extreme value analysis are appar-
ently contradictory. Whereas extreme data are downweighted when defining robust
statistics, these observations receive most attention in an extreme value approach. So
within an extreme value framework, some robust algorithms replacing the maximum
likelihood part of this methodology can be of use leading to estimates which are less
sensitive to a few particular observations.

Robust methods can improve the quality of EVT data analysis by providing infor-
mation on influential observations, deviating substructures and possible misspecifica-
tion of a model, while guaranteeing good statistical properties over a whole set of un-
derlying distributions around the assumed one ([4]).

In this study we use two methods: a conditional GARCH(1,1) model – a classical
one and with a robust method of estimating volatility and a bootstrapping approach
based on a combination of a Generalized Pareto Distribution (GPD) and the empirical
distribution of the returns (semi-nonparametric model). These models are used for
VaR calculation and compared.
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The paper is organized as follows: in Section 2 we present the data sets and pre-
liminary analysis, in Section 3 – basic information about VaR estimation, in Section 4
we present extreme value theory and the semi-nonparametric method for estimating
VaR proposed by C. Brooks, A.D. Clare, J.W. Dale Molle and G. Persand, while some
facts regarding robust methods of estimation are described in Section 5. Section 6
displays and analyses the results and finally, Section 7 concludes.

2. Preliminary data analysis

In this study we examined the behavior of choosen indices of four national stock
exchanges from EU states, namely DAX (Germany), FTSE100 (UK), BUX (Hun-
gary), WIG20 (Poland) and one Canadian S&PTSX Composite. The data span the
period of February 16th 2001 to June 29th 2007 (observations from 30 June 2007 to 20
June 2008 are reserved for out-of-sample testing). For all these indices, we compute
daily log-returns.

Table 1 provides summary statistics as well as the Jarque–Bera value.

Table 1. Descriptive statistics of the daily returns, log(xt/xt–1), from five stock markets

DAX FTSE100 BUX WIG20 S&PTSX
Mean –0.00001 0.00005 0.000862 0.00053 0.000208
Standard Deviation 0.015814 0.01105 0.013327 0.01445 0.009999
Skewness –0.170991* –0.17628* –0.174125* 0.04870* –0.820490*
Kurtosis 3.796985* 3.860970* 1.302525* 1.05130* 7.73350*
Normality test statistica 1103.301* 993.3196* 118.2762* 72.4430* 4821.548*

* represents significance at the 5% level (two-tailed test),
a Jargue–Bera test.

Table 1 shows that all five returns series show strong evidence of skewness – only
the WIG20 returns are positively skewed, while the returns on the others are nega-
tively skewed. This indicates that the asymmetric tail extends more towards negative
values than positive ones. Based on the sample kurtosis estimates, it may be argued
that the return distributions in all the markets are leptokurtic. In particular, the Cana-
dian S&PTSX series has the highest coefficient of excess kurtosis. The Jarque–Bera
test statistic consequently rejects normality for all the log-return series. The fat-tailed
nature of the five series provides strong motivation for the estimation methodologies
employed in this paper.
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3. Estimating Value at Risk

VaR has become a standard for measuring and assessing risk. It is defined as
a quantile of the distribution of returns (or losses) for an asset or portfolio. It can also
be defined as the predicted worst-case loss at a specific confidence level over a certain
period of time.

Formally, let )/log( 1−= ttt ppx  be the return at time t, where pt is the price of an
asset at time t. We denote the (1–q)% quantile estimate at time t for a one-period-
ahead return as VaR(q), so that

qqxP tt =< ))(VaR( .

More formally, VaR is calculated according to the following equation

tt qF σ)(VaR 1−= ,

where )(1 qF −  is the corresponding quantile of the assumed distribution and tσ  is the
forecast of the, usually conditional, standard deviation at time t – 1.

We compare four different models for estimating returns one period ahead. These
models are:

• VaR with GARCH-N (the error term is assumed to be normally distributed)
where the initial estimate of 2

0σ  is given by the sample variance (parametric, condi-
tional method),

• VaR with GARCH-N (the error term is assumed to be normally distributed)
where the initial estimate of 2

0σ  is given by a robust estimator (it is essential to have a
very robust initial estimate, which is very stable and ensures reasonable accuracy of
the first estimate),

• classical EVT model (semi-nonparametric, unconditional method),
• semi-nonparametric, unconditional method based on EVT with a robust method

of estimation.

4. Some key facts in extreme value theory and VaR with EVT

One of the most important goals of financial risk management is the accurate cal-
culation of the probabilities of large potential losses due to extreme events, such as
stock market crashes, currency crises or trading scandals. It is well known that tradi-
tional parametric and nonparametric methods for estimating distributions and densities
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often give very poor fits to the tails. In recent years, there have been a number of ex-
treme value studies in the finance literature which showed that EVT is a powerful and
yet fairly robust framework to study the tail behavior of a distribution.

In extreme-value theory the extreme value index γ is used to characterize the tail
behavior of a distribution. This real-valued parameter helps to indicate the size and
frequency of certain extreme events under a given probability distribution – the larger
γ, the heavier the tail.

The tail of a distribution can be modeled using the conditional excess distribution
function, which describes the conditional distribution of exceedences (or excesses)
over a given threshold level. A theorem by BALKEMA and de HAAN (1975) shows that
for a sufficiently high threshold the distribution function of the excess may be ap-
proximated by the generalized Pareto distribution (GPD). The distribution of excesses
over a high threshold converges to one of three different extreme value distributions:
the exponential, Pareto, and Uniform distributions, for γ = 0, γ > 0 and γ < 0 respec-
tively.

Let ),( Ζ∈nX n  be a family of random variables representing daily observations of
the log-returns on stock prices. We make the crude assumption that these returns are
independent and identically distributed (iid) from an unknown underlying distribution
F. In addition, let xL and xU represent lower and upper thresholds of the tails, such that
xt exceeds xL if and only if 0<< Lt xx  and xt exceeds xU if and only if 0>> Ut xx  for

nt ...,,2,1= .
The parameters of GDP are typically estimated using the method of maximum-

likelihood. The log-likelihood function for estimating σU and γ at an upper tail thresh-
old U is
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1
∑
=

++−−=
k

i U

iU

U
UUU

ykkl
σ
γ

γ
σσγ    for   0≠γ ,

where
k is the number of exceedences in a sample of n observations,
σU – scale parameter,
γU – maximum likelihood tail index estimator,
yi – the exceedance of the threshold for the i-th observation1.
The crucial step in estimating the parameters of the GPD is the determination of

a threshold value. While MCNEIL and FREY [14], MCNEIL (1997) and MCNEIL (1999)
use the “mean-excess-plot” as a tool for choosing the optimal threshold level, Gavin
(2000) uses a threshold level according to a somewhat arbitrarily chosen confidence
level of 90%. In NEFTCI [15] the threshold level is 1.645 times the unconditional vari-
ance of the data, which means 5% of the observations would be above the upper
                                                     

1 For a lower threshold L, the log-likelihood function can be derived similarly.
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threshold if the data were normally distributed. In this paper, we follow a slightly dif-
ferent approach. We first estimate the GDP parameters corresponding to various
threshold levels, representing respectively 1%, 2%, 3%, ... till 15% of the extreme
observations. Then we plot a graph of the estimated parameters and choose the thresh-
old level at which the estimate stabilizes. This is a non-parametric way of choosing the
optimal threshold level which is useful when the mean-excess-plot or the assumption
of normality of the returns distribution fail.

The selected number of exceedances, maximum likelihood estimates (MLE) of the
parameters of the GDP and threshold level are presented in table 2.

Table 2. Number of extremes, maximum likelihood parameters of GDP and the threshold levels

DAX FTSE100 BUX WIG20 S&PTSX
Lower tail

k 32 54 41 45 19
σ̂ 0.0038 0.0128 0.0020 0.0053 0.0329
γ̂ 0.2830 0.0013 0.1771 0.8042 0.2660
TL 0.0479 0.0372 0.0281 0.0347 0.0293

Upper tail
k 50 52 53 59 40
σ̂ 0.0109 0.0078 0.0032 0.0042 0.0057
γ̂ 0.1014 0.5693 0.1198 0.6809 0.1804
TU 0.0415 0.0348 0.0303 0.0352 0.0247

The empirical results are clear-cut and allow one to determine the type of general
Pareto distribution: for all five indexes the asymptotic distribution belongs to the do-
main of attraction of the Pareto distribution.

The highest value of the estimated tail index for the left tail belongs to the WIG20
index and this is an indication of the high risk associated with this market. For the
FTSE100 index, this estimator is only 0.0013, which indicates that the negative re-
turns distribution is not so heavy-tailed. For the BUX, DAX, WIG20 and S&PTSX
indexes, the right tail index is less than the left tail index, so we can conclude that risk
and reward are not equally likely in these markets. On the other hand, the FTSE100
has a higher estimate of the right tail index than of the left tail index. Therefore, high
positive returns are more likely than similar losses in this market.

The EVT can be utilized to estimate the upper and lower VaR threshold levels. The
critical step in calculating VaR is the estimation of the threshold point that will define
what variation in xt is to be considered “extreme.” Denote (following BROOKS et al. [3])
TU = TU(1 – q) and TL = TL(q) to be the q-th and (1 – q)-th percentiles (0 < q < 1)2.

                                                     
2 xU has to be selected so that the threshold needed for value at risk calculations, namely TU, is much

farther into the tail, so that TU > xU.
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The estimator of the tail probability is (Bali [1])
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Table 2 shows results for both lower and upper threshold values3.
For the upper tail, the threshold is further into the tail for the DAX Index (set at

0.04148) followed by the WIG20, FTSE100, BUX, and S&PTSX. A different result is
obtained for the lower tail: the threshold is further into the tail for the DAX Index (set
at 0.04785) followed by the FTSE100, WIG20, S&PTSX and BUX.

The results show that the extreme tails yield threshold points, TL and TU, that are
up to 61% higher for the DAX Index than the thresholds, TL and TU, one obtains for
the S&PTSX Index.

4.1. A semi-nonparametric methodology for estimating VaR

Extant approaches using EVT focus only on the tails and do not consider observa-
tions in the center of the distribution. In this paper we use an EVT semi-nonparametric
approach, which makes use of information from both the tails and the center of the
distribution, but treats each separately.

In the empirical study, VaR is estimated for 1 day investment horizons by simu-
lating the conditional densities of price changes, using the bootstrapping methodology
([5]). The simulation study is conducted for the generalized Pareto model4 by boot-
strapping from both the two fitted tails and from the empirical distribution function
derived from the log returns ([3]).

In the case of the generalized Pareto model, the path for future prices is simulated
as follows:

                                                     
3 In these calculations q is set to be 0.01.
4 The reason why the generalized Pareto distribution is used for the tails rather than simply using the

empirical distribution throughout is that the number of observations in the tails may be insufficient to
obtain accurate results without using an appropriate fitted distribution.
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• draw samples, with replacement, of the xt from the empirical distribution F(xt)
– if xt < TL, then draw from the generalized Pareto distribution fitted to the lower

tail, however
– if xt > TU, then draw from the generalized Pareto distribution fitted to the upper

tail, or
– if xt falls in the middle of the empirical distribution, i.e. TL < xt < TU, then xt is

retained.
The number of draws of xt is equal to the length of the investment horizon.
HSIEH [9] assumed that prices are log-normally distributed, i.e. that the lowest

(highest) of the log ratios of the simulated prices over the holding period, i.e.
)/ln( 0PPx ll = , is normally distributed. However, in this paper we do not impose this

restriction, but instead the distribution of xl is transformed into a standard normal dis-
tribution by matching the moments of the distribution of the simulated values of xl to
one of a set of possible distributions known as the Johnson family of distributions
([10]) or ([12]). Matching moments to the family of Johnson distributions requires the
specification of a transformation that maps the distribution of xl to a distribution that
has a standard normal distribution. In this case, matching moments implies finding
a distribution whose first four moments are known, i.e. one that has the same mean,
standard deviation, skewness and kurtosis as the distribution of the samples of xl.

For all five indexes, the distributions of the xl values were found to match the un-
bounded Johnson distribution. Therefore, the estimated 5th percentile of the simulated
distribution of xl fitted to the Johnson system is based on the following transformation:

cd
b

axl +⎟
⎠
⎞

⎜
⎝
⎛ −−

=
645,1sinh*

5,

where *
5,lx  is the 5th  percentile of the Johnson distribution derived from the samples of

xl, and a, b, c and d are estimated parameters, whose values are determined by the first
four sample moments of the simulated distribution of xl.

The distribution of Q/P0, where Q is the maximum loss, will depend on the distri-
bution of Pl/P0. So the first step is to find the 5th percentile of the distribution of xl,

*
5,l

l

ll xx
≅

−
σ
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where μl is the expected value of the simulated distribution of xl and σl is usually the
standard deviation of the simulated distribution of xl. Expressions for Q/P0 and Pl/P0 can
be found by exponentiating both sides of the expressions from the above equation, i.e.
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5,

0
lll

l x
P
P μσ +⋅=     and     ))exp((1 *

5,
0

lllx
P
Q

μσ +⋅±−= .



Estimation of value at risk: extreme value and robust approaches 139

5. Robust methods of estimation:
some theoretical results

The primary goal of robust statistics is to provide tools not only to asses the ro-
bustness properties of classical procedures, but also to produce new estimators and
tests that are robust to deviations from the model. From a data-analytic point of view,
robust statistical procedures will find the structure which fits the majority of the data
in the best way, identify deviating points (outliers) and substructures for further treat-
ment, and in unbalanced situations identify and warn about highly influential data
points. HUBER [8] considers a stricter concept of a robust estimate. It should satisfy
the following two properties:

– the estimate should be still reliable and reasonably efficient under small devia-
tions from the assumed parametric model

– replacing a small fraction of observations in the sample by outliers should pro-
duce a small change in the estimate.

Statisticians have already developed various sorts of robust statistical methods of
estimation. In the literature, particular attention has been paid to estimators with:
a high breakdown point (near 50%, but for realistic applications 20% is satisfactory),
the property of affine aquivariance, computationally fast algorithms to compute them.
Standard properties, such as bias and precision, are also of interest.

For further consideration, let a parametric model given by a distribution function
Fθ with density fθ. Some of the most popular robust estimators are M-estimators, first
introduced by HUBER [7]. M-estimators represent a very flexible and general class of
estimators, which have played an important role in the development of robust statistics
and in the construction of robust procedures. However, this idea is much more general
and is an important building block in many different fields.

We consider here the general class of M-estimators which are defined implicitly as
the solution in θ  of

∑
=

=
n

i
ix

1

0);( θψ

with ψ being a function satisfying mild conditions (HUBER [7]).
General results in robust statistics imply that an estimator with
– a bounded asymptotic bias in a neighbourhood of the considered model can be

constructed by choosing a bounded function ψ (in x);
– a high asymptotic efficiency can be achieved by choosing a ψ function which is

similar to the score function s(x, θ) in the range where most of the observations lie.
In general, the ψ function defining the M-estimator is itself a function of the score

function, i.e. )];([);( θθψ xsKx = . For example, if
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);();( θθψ xsx = ,

we have the ML estimator, and if

)]);([();( axsAHx c −= θθψ ,

where

)
||||

;1min()(
z
czHc =

are Huber weights dependent on the tuning constant c, A is a pxp matrix and a is a px1
vector which are determined implicitly by

IAaxsaxsAE TT =−− ]]);(][);([[ θθ ,

0]]);([[ =− axsAE θ

we have the optimal B-robust estimator for the standardized case (see [6]). This esti-
mator is the most efficient estimator in the class of M-estimators with a bounded in-
fluence function.

In this study, robust estimators are used for the conditional variance GARCH-N
(more precisely, estimation of 2

0σ ) and the parameter T],[ γσθ = of the Generalized
Pareto Distribution. In order to obtain robust estimates for these parameters, we adopt
the optimal B-robust estimator.

6. Empirical analysis

In the present study we carried out a comparative study of the predictive ability of
VaR estimates obtained from the following techniques: semi-nonparametric bootstrap-
ping – the EVT (unconditional) model and the parametric model – GARCH(1,1)5, using
two approaches in each case (classical and robust).

In-Sample Performance
Daily VaR measures at the 99% probability level are estimated for the period of

February 16th 2001 to June 29th 2007 for the DAX, FTSE100, BUX, WIG20 and
S&PTSX Composite Indexes. The results are presented in table 3.

                                                     
5 Parameter estimates for the models selected were obtained by the method of maximum likelihood

and the log-likelihood function of the data was constructed by assuming that the conditional distribution
of innovations is Gaussian.
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Table 3. Value at Risk (99% probability level) calculated by semi-nonparametric bootstrapping
using (unconditional) EVT models – with both classical and robust techniques of estimation,

and the robust conditional and unconditional GARCH(N)

Parametric models Semi-nonparametric bootstrapping      Model

Index
GARCH(N)
con. classic

GARCH(N)
con. robust

EVT – classical EVT – robust

DAX 0.0445 0.0397 0.1335 0.117
FTSE100 0.0159 0.0089 0.0275 0.0201
BUX 0.0292 0.0215 0.0959 0.0467
WIG20 0.0522 0.0312 0.6781 0.593
S&PTSX 0.0168 0.0178 0.0507 0.0394

The VaRs based on the semi-parametric bootstrapping model are always higher
than for the parametric methods of calculation. Comparing the VaRs calculated di-
rectly from the two parametric models, there appears to be a tendency for the
GARCH(1,1) with robust estimation to generate slightly smaller VaRs than those with
standard estimators.

In general, conditional models yield lower estimates for VaR. This occurs because
conditional models take into account the current conditions in the economy expressed
by the current clustered volatility. On the other hand, unconditional models capture
extreme events that have appeared at certain times in the price history.

Out-of-Sample Performance
In order to evaluate the models, we generate out-of-sample VaR forecasts for the

five equity indices for the period of 30th June 2007 to 20th June 20086. For all the
models and equity indices, we use a rolling sample of 250 observations with the same
number of VaR forecasts7. We generated one-day VaR forecasts with a 99% confi-
dence level and compared the actual daily profits and losses of the five indexes with
their daily estimates of value at risk.

The measure of a model’s performance was chosen to be the number of times the
VaR “underpredicts” realized losses over the out-of-sample period. The percentages of
days that the VaRs were exceeded by the actual trading losses are given in table 4 for
each model.

The nominal probability of a violation is set at the 1% level (i.e. the percentage of
exceedences should be close to the nominal 1% value). An accurate and appropriate
model is obtained when the expected violation ratio is equal to 1%.

                                                     
6 The Basel Committee requires the use of a 1-trading year “back-test” sample of returns, in order to

evaluate the suitability of the model.
7 The parameters of the models are re-estimated every trading day.
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Table 4. Out of sample tests – realized percentage of daily VaR violations

Parametric models Semi-nonparametric bootstrapping          Model

Index
GARCH(N)
con. classic

GARCH(N)
con. robust

EVT – classical EVT – robust

DAX 3.8 1.1 0.4 0.0
FTSE100 0.7 2.5 0.0 0.0
BUX 2.3 1.9 1.2 1.1
WIG20 6.8 2.4 1.9 0.8
S&PTSX 3.4 3.6 1.4 0.7

Analyzing the results from table 4, we can conclude that the procedures based on
the bootstrap perform better, with very few or no exceedences. The percentage of ex-
ceedences is close to 1% for these procedures. Considering the WIG20 for example,
the parametric models lead to too low a VaR and slightly over-estimate the VaRs for
the DAX index. The percentage of exceedences is close to 7% for the classical
GARCH(1,1) model in the case of the WIG20 and 3% for the S&PTSX. It is observed
that the semi-nonparametric procedure based on robust estimators generated more
accurate VaRs than any other method.

7. Conclusion

The purpose of this paper has been to carry out a comparative study of the predic-
tive ability of VaR estimates from various estimation techniques for five different
stock indexes from Germany, UK, Hungary, Poland and Canada.

Particular attention has been given to methodology based on Extreme Value The-
ory and robust methods of estimation. The main question was how well robust meth-
ods of estimation used in EVT – models perform in modelling the tails of distributions
and in estimating and forecasting VaR measures.

We used an unconditional EVT bootstrapping approach based on a combination of
the generalized Pareto distribution and the empirical distribution of returns, as well as
a parametric model – GARCH(1,1) – using both classical and robust methods of esti-
mation.

Our main finding is that out-of-sample tests of the calculated VaRs show that the
proportion of exceedences produced by the semi-nonparametric approach using Ex-
treme Value Theory and based on a robust method, which separately models the tail
and central regions, are considerably closer to the nominal probability of violations
than competing approaches which fit a single model to the whole distribution.

Under the European Union’s CAD II, investment firms and banks in Europe are
now permitted to use their own internally developed VaR models to calculate the re-
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quired capital to cover losses in their trading positions. Given that lots of models are
now in widespread use, it is crucial to compare different approaches to computing
value at risk. Thus, as EVT is of increasing importance in risk management, robust
methods can improve the quality of EVT data analysis.
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