
O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S
No. 2 2021
DOI: 10.37190/ord210206

COMPUTING POWER INDICES FOR WEIGHTED VOTING
GAMES VIA DYNAMIC PROGRAMMING

JOCHEN STAUDACHER1*, LÁSZLÓ Á. KÓCZY2, 3, IZABELLA STACH4, JAN FILIPP1,
MARCUS KRAMER1, TILL NOFFKE1, LINUS OLSSON1, JONAS PICHLER1, TOBIAS SINGER1

1Fakultät Informatik, Hochschule Kempten, Bahnhofstr. 61, 87435 Kempten, Germany
2Institute of Economics, Centre for Economic and Regional Studies,

Tóth Kálmán u. 4, H-1097 Budapest, Hungary
3Department of Finance, Budapest University of Technology and Economics,

Magyar tudósok körútja 2, H-1112 Budapest, Hungary
4AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

We study the efficient computation of power indices for weighted voting games using the para-
digm of dynamic programming. We survey the state-of-the-art algorithms for computing the Banzhaf
and Shapley–Shubik indices and point out how these approaches carry over to related power indices.
Within a unified framework, we present new efficient algorithms for the Public Good index and a re-
cently proposed power index based on minimal winning coalitions of the smallest size, as well as a very
first method for computing the Johnston indices for weighted voting games efficiently. We introduce
a software package providing fast C++ implementations of all the power indices mentioned in this ar-
ticle, discuss computing times, as well as storage requirements.

Keywords: cooperative game theory, power indices, weighted voting games, dynamic programming, min-
imal winning coalitions

1. Introduction

Decision-making and voting in committees are frequently modelled using weighted
voting games (also known as weighted majority games) for n players. Each player i is
assigned a positive weight wi which in some situations may come from the number of
votes of a voting block. A law or motion gets passed in the committee if a certain quota q,
normally more than 50% of the sum of all weights, is reached or exceeded. Power indi-
ces provide measures for evaluating the power or influence of individual players. As

*Corresponding author, email address: jochen.staudacher@hs-kempten.de
Received 1 November 2020, accepted 19 April 2021

 J. STAUDACHER et al.

124

based on different bargaining models and different axiomatic assumptions, various
power indices have been introduced in the literature, see, e.g., [9].

Weighted voting games together with power indices as a tool for their analysis enjoy
a wide range of applications well beyond classical voting situations in politics, see, e.g.,
[2, 24, 26] for the latter. For example, power indices can also be used to rank genes that
may be responsible for genetic diseases [27], to understand indirect control power in
corporate shareholding structures [11, 30, 31], or to analyse social networks [21]. The
fact that the number n of players in these applications may be large and that the compu-
tation of any power index presented in this article is NP-hard [29] make the efficient
computation of power indices challenging. Plenty of attention has been devoted to gen-
erating functions for computing power indices, see, e.g., [1, 2, 12]. This approach ben-
efits strongly if the subsets of players attain only very few different weight sums [26].
In the latter case, one can exploit fast-access data structures for polynomials with few
coefficients in computer algebra systems like Mathematica [35]. This article studies the
strongly related, though mathematically less sophisticated, paradigm of dynamic pro-
gramming for the computation of power indices [28, 36]. In Section 2, we introduce 12
power indices investigated in this paper together with a small example. Section 3 ex-
plains how coalitions are counted via dynamic programming. In Section 4, we survey
the state-of-the-art algorithms for computing the Banzhaf index [4] and the Shapley
–Shubik index [33], along the lines of Kurz [26], and point out how these ideas carry
over to other power indices. In Section 5, we study power indices based on minimal
winning coalitions and present new recursions. We devise new efficient algorithms for
computing the Public Good indices [20] of all players in ()O qn time, as well as for the
power index based on minimal winning coalitions of minimal size recently proposed by
Felsenthal [18]. We present an ()2O qn algorithm for the Deegan–Packel index [16], de-

vised by Uno [36], within our unified framework. In Section 6, we propose a very first effi-
cient ()3O qn method for computing the Johnston index [22] and provide new valuable in-

sight into how to count critical players within coalitions via dynamic programming. In
Section 7, we introduce a powerful software package providing C++ implementations for
all the power indices mentioned in this article, and discuss challenges like the necessity to
process very large integers. Numerical experiments confirm our classification of power in-
dices according to the different pseudopolynomial complexities of their computation.

2. Weighted voting games and power indices

A cooperative n-person game is defined by a set of n players { }1, ...,N n= and
a characteristic function : 2Nv →  assigning each subset 2NS ∈ a real value with

Computing power indices for weighted voting games via dynamic programming

125

() 0.v ∅ = N is called the grand coalition and S denotes the cardinality of the set S.
Weighted voting games are defined by n non-negative real weights , 1, ..., ,iw i n= and
a non-negative real quota q. They are simple games, meaning that the characteristic
function v takes only the values 0 or 1, i.e., { }: 2 0,1 .Nv → Specifically, () 1v S = if
a coalition S is winning, i.e., () ,i

i S

w S w q
∈

= ≥ and () 0v S = otherwise, meaning coali-

tion S is losing. A player i is called a critical player (also known as a decisive player or
swing player) for a coalition S if () 1v S = and { }()\ 0,v S i = i.e., by leaving the coali-

tion S player i turns a winning coalition into a losing one. ()Cr S is the set of critical
players in a coalition S. A player i who is not critical for any coalition 2 ,NS ∈ is called
a null player. A coalition S containing at least one critical player is referred to as a vul-
nerable coalition. A coalition S is called a minimal winning coalition if each member
of S is a critical player. A power index f is a function mapping a unique vector

() () ()()1 , ..., Nf v f v f v= to a given simple cooperative game specified by the player

set N and the characteristic function v. We call f efficient if () ()
1

1.
n

i
i

f v v N
=

= =

Definition 1. Let v be a simple n-player game, let W, Wnp, Wm, and Ws denote the
sets of winning coalitions, null player free winning coalitions, minimal winning coali-
tions and minimal winning coalitions of smallest cardinality, respectively, and ,iW

,np
iW ,m

iW and s
iW the corresponding subsets containing player i. Further, let VC denote

the set of vulnerable coalitions, ()i vη the number of coalitions for which i is a critical
player, and (),i v cη the number of coalitions of cardinality c for which i is a critical
player.

A. The (absolute) Banzhaf index [4, 8] of player i is defined as

()
12

i
i n

vη
β −=

The relative Banzhaf index [8] defined as ()

()
1

i
i n

k
k

v

v

η
β

η
=

′ =


 is frequently used as an

efficient counterpart, i.e.,
1

1.
n

i
i

β
=

′ =

 J. STAUDACHER et al.

126

B. The Deegan–Packel index [16] of a player i is defined as

1 1
m

i

i m
S W

DP
SW ∈

= 

C. The Felsenthal index [18] of a player i is defined as

1 1
s

i

i s
S W

PI
SW ∈

= 

D. The Johnston index [22] of a player i is defined as

()()

()()

,

1 ,

1

1
S VC i Cr S

i n

k S VC k Cr S

Cr S

Cr S

γ ∈ ∈

= ∈ ∈

=


 

if i is not a null player and 0iγ = otherwise.
E. The König–Bräuninger index [23] of a player i is defined as

i
i

W
KB

W
=

F. The Nevison index [32] of a player i is defined as

2
i

i n

W
Z =

G. The null player free index npf [3] of a player i is defined as

1 1
np

i

np
i np

S W

f
SW ∈

= 

H. The null player free index npg [3] of a player i is defined as

1
| |

np
inp

i n
np

k
k

W
g

W
=

=


Computing power indices for weighted voting games via dynamic programming

127

I. The Public Good index (also known as the Holler index or PGI) [20] of a player i
is defined as

1
| |

m
i

i n

k
k

m

W
h

W
=

=


J. The Public Help index θ (also known as PHI θ) [7] of a player i is defined as

1
| |

i
i n

k
k

W

W
θ

=

=


K. The Public Help index ξ (also known as PHI ξ) [10] of a player i is defined as

2

1 1
1 | |

i

i
S W

T W

S
T

ξ
∈

∈

= 


 L. The Shapley–Shubik index [33, 34] of a player i is defined as

()
1

,n
i

i
c

v c
n

c
c

η
φ

=

=
 
 
 



Example 1. We study the 5-player weighted voting game with weights 1 4,w = 2 3,w =

3 4 5 1,w w w= = = and quota 6.q = We derive the values of the 12 power indices from
Definition 1 in the following. With the coalition { }1, 2 , there exists only one minimal win-

ning coalition of the smallest cardinality leading to the Felsenthal indices 1 2
1 ,
2

PI PI= =

3 4 5 0.PI PI PI= = = With the additional minimal winning coalitions { }1, 3, 4 , { }1, 3, 5 ,

{ }1, 4, 5 , and { }2, 3, 4, 5 we find the Deegan–Packel indices 1 0.3,DP = 2 0.15,DP =

3 4 5
11 ,
60

DP DP DP= = = and the Public Good indices 1
4 ,

15
h = 2

2 ,
15

h = 3 4 5 0.2.h h h= = =

We need to include the additional 8 winning coalitions to derive the other indices. Players
1 and 2 are critical in { }1, 2, 3 , { }1, 2, 4 , and { }1, 2, 5 , player 1 is the only critical player

 J. STAUDACHER et al.

128

in { }1, 2, 3, 4 , { }1, 2, 3, 5 , { }1, 2, 4, 5 , { }1, 3, 4, 5 , and there is no critical player in

{ }1, 2, 3, 4, 5 .N = With this information, we find absolute Banzhaf indices: 1
11 ,
16

β =

2
5 ,

16
β = 3 4 5

3 ,
16

β β β= = = Johnston indices: 1
7 ,

12
γ = 2

3 ,
16

γ = 3 4 5
11 ,

144
γ γ γ= = =

König–Bräuninger indices: 1
12 ,
13

KB = 2
9 ,

13
KB = 3 4 5

8 ,
13

KB KB KB= = = Nevison in-

dices: 1
3 ,
4

Z = 2
9 ,

16
Z = 3 4 5

1 ,
2

Z Z Z= = = null player free indices :n pf 1
37 ,

130
npf =

2
27 ,

130
npf = 3 4 5

11 ,
65

np np npf f f= = = null player free indices :npg 1
4 ,

15
npg = 2 0.2,npg =

3 4 5
8 ,
45

np np npg g g= = = Public Help indices :θ 1
4 ,

15
θ = 2

1 ,
5

θ = 3 4 5
8 ,
45

θ θ θ= = =

Public Help indices :ξ 1
362 ,

1185
ξ = 2

262 ,
1185

ξ = 3 4 5
187 ,
1185

ξ ξ ξ= = = Shapley–Shubik

indices: 1
9 ,
20

φ = 2
1 ,
5

φ = 3 4 5
7 .
60

φ φ φ= = = Note that the Public Help index θ and the

null player free index npg need to coincide because our example does not contain any
null players.

3. Counting coalitions via dynamic programming

Every weighted voting game allows an integer representation [26]. Hence, we as-
sume that the weights wi of n players in our weighted voting game as well as the quota q are

positive integers. We set ()
1

n

i
i

w w N w
=

= = and assume .
2
wq >


The idea of dynamic programming is to solve a problem algorithmically, by divid-
ing it into subproblems and storing intermediate results efficiently. We can employ this
paradigm to solve the following question: How many subsets { }1, 2, ...,S n⊆ are there
with weight x, i.e., () i

i S

w S w x
∈

= = for { }0, 1, ..., ?x w∈ 

Theorem 1 [15], p. 229. Let () , T i x be the number of possibilities to write the integer x
as a sum of the first i weights 1 ., ..., iw w For all { }0, ...,i n∈ and all { }0,1 , ...,x w∈  there
holds

Computing power indices for weighted voting games via dynamic programming

129

(0,) 0 for 0
(,) (1,) (1,) ot

f

h

(

erwi e

, 0) 1 0

s

or

ii

T
T x x
T x w

i i n

T i x T i x
= >
= − −

≤

−

= ≤

+ 

Note that the above equations come down to a boundary condition, stating that we
can obtain the sum 0 in exactly one way, i.e., via the empty set, to another boundary
condition, stating that we cannot obtain any sum 0x > without any term and an actual
recursion reflecting that the first i weights can deliver a sum 0x > either with or with-
out player i.

Example 2. Let us compute () , T i x for the three weights 1 , = 4w 2 , = 2w 3 . = 1w
We list only the non-zero values for weights 0x > in every step. 1i = leads to ()1, 4 1.T =

2i = leads to () () ()2, 2 2, 4 2, 6 1,T T T= = = 3i = leads to () () ()3,1 3, 2 3, 3T T T= =

() () () ()3, 4 3, 5 3, 6 3, 7 1.T T T T= = = = =
Theorem 1 can easily be generalised for the distribution of cardinalities of coalitions.

Theorem 2 [15], p. 231. Let () , , C i x c be the number of possibilities to write the
integer x as a sum of weights of a coalition { }1, ...,S i⊆ with cardinality c. For all i,

{ }0, ...,c n∈ and all { }0,1, ...,x w∈  there holds

(, 0,) 1 for 0 and 0
(0, ,) 0 for 1 and 1
(, , 0) 0 for 1 and 1
(, ,) (1, ,) for 1 , 1
(, ,) (1, ,) (1, , 1) otherwise

and 1i

i

C i c i n c n
C x c x w c n
C i x i n x w
C i

i
x c C i x c i n x w

CC x c i x c C i w c
n

x
c

= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= ≤ ≤ ≤ ≤
= − ≤
= − + − −

≤
−

≤ ≤ < ≤





Example 3. Let us revisit Example 2 and compute () , , C i x c for the three weights

1 4,w = 2 2,w = 3 1w = listing the non-zero values for weights 0x > and cardinalities c > 0.
i = 1 leads to ()1, 4,1 1,C = 2i = leads to () ()2, 2,1 2, 4,1 1,C C= = and ()2, 6, 2 1,C =
i = 3 leads to () () ()3,1,1 3, 2,1 3, 4,1 1C C C= = = as well as to ()3, 3, 2C = C(3, 5, 2)

()3, 6, 2 1C= = and ()3, 7, 3 1,C = the latter reflecting the sum of all three weights.
In practice, none of the following algorithms for computing power indices will require

us to store T from Theorem 1 as a two-dimensional table. Instead, we shall always be able
to work efficiently with a vector that we can update for i. Likewise, we never need to store C

 J. STAUDACHER et al.

130

from Theorem 2 as a three-dimensional array, allowing us to work with a matrix instead. It
is the merit of Kurz [26] to have pointed out that rather than computing the quantities

(),T n x and (), ,C n x c from below we can equivalently compute them from above using

() (), , , 1.T n w C n w n= =  As we assume ,
2
wq >


 this brings down computing times from

()O qn and ()2O qn to ()O nΔ and ()2O nΔ with ()min , 1 ,q w qΔ = − + respectively, in

the following section.

4. The approach for power index computation by Kurz

The Banzhaf index [4] is one of the most important power indices. Uno [36] presents
the first algorithm for computing the Banzhaf indices of all players in a weighted voting
game in ()O qn time. This result is improved by Kurz [26] to ()min , 1 .q w qΔ = − + We
summarise this result and point out that it almost trivially carries over to four other
power indices from Definition 1.

Theorem 3. Let v be an n-player weighted voting game with positive integer
weights. The quantities () ,i vη iW and n p

iW can be computed in ()O nΔ time and

()O Δ memory space for all the players. Hence, the following indices can be computed
in ()O nΔ time and ()O Δ space for all players: Banzhaf, König–Bräuninger, Nevison,
null player free index ,npg and Public Help θ.

Proof. We start with the proof for the Banzhaf indices – hence ()i vη – following
Kurz [26]. It provides algorithmic insight into how ()i vη can be computed from either
below or above. In the conceptually simpler case ()1 ,q w q≤ − + we compute the vector

(),T n x for all weights 0 1x q≤ ≤ − from below, according to Theorem 1. This can be
done in ()O qn time and ()O q space. Next, we need to work out how frequently
a player i is critical, i.e., how often i turns a losing coalition into a winning one. We set

(), 0iT n x− = for all { }0,1, ..., 1ix w∈ − and loop for x from iw to 1q − to find

() () (), , ,i i iT n x T n x T n x w− −= − −

Computing power indices for weighted voting games via dynamic programming

131

Then, (),iT n x− tells us how frequently a player i does not belong to a losing coali-
tion with weight x and we obtain

() ()
1

,
i

q

i i
x q w

v T n xη
−

−
= −

= 

In case ()1 ,w q q− + < we compute the vector () , T n x for q x w≤ ≤  from above,

using the corresponding algorithm in the paper by Kurz [26] in ()()1O w q n− + time

and ()1O w q− + space. We set () (), ,iT n x T n x+ = for all { }1, ..., ,ix w w w∈ − +  and
then loop for x from iw w− down to q to find

() () (), , ,i i iT n x T n x T n x w+ += − +

Now, (),iT n x+ tells us how often player i belongs to a winning coalition with
weight x and we obtain

() ()
1

,
iq w

i i
x q

v T n xη
+ −

+
=

= 

We know (),
w

x q

W T n x
=

=


 (as stated in [26]). We need iW for the König–Bräun-

inger, Nevison, and Public Help θ indices. We can compute (),
w

i i
x q

W T n x+
=

=


 or, alter-

natively, use the identity by Dubey and Shapley [17] and get ()()0.5i iW W vη= + from

().i vη For the computation of null-player free indices ,npg let us assume the n non-
-negative integer weights in descending order. Computing () ,i vη we can find the num-

ber np of non-null players in a preprocessing step. Setting
1

,
np

np
i

i

w w
=

= we get

(),
npw

np
i i

x q
W T np x+

=

=


for the non-null players and hence the null-player free indices npg in ()O nΔ time. 

 J. STAUDACHER et al.

132

We mention in passing another fast algorithm from the paper by Matsui and Matsui [28]
for finding all null players in ()O qn time, see also the textbook [15], p. 234–235.

Next to the Banzhaf index, the Shapley–Shubik index [33] is arguably the most
widely used power index. Uno [36] devises the first algorithm for computing the Shap-
ley–Shubik indices of all players in a weighted voting game in ()2O qn time. It is im-

proved by Kurz [26] to ()2 .O nΔ We summarise this result and carry it over to two other

power indices from Definition 1.

Theorem 4. Let v be an n -player weighted voting game with positive integer
weights. The Shapley–Shubik index, the Public Help index ξ, and the null player free
index npf can be computed in ()2O nΔ time and ()O nΔ memory space for all players.

Proof. The reasoning is very similar to the proof of Theorem 3. Again, we follow
the proof for the Shapley–Shubik indices from the paper by Kurz [26], but strive to
provide more algorithmic details in our presentation while focussing on the concepts
rather than implementation issues. For the Shapley–Shubik indices, the challenge is
to find (), .i v cη In the conceptually simpler case ()1q w q≤ − + we compute the ma-
trix () , , C n x c for all weights 0 1x q≤ ≤ − and all cardinalities 0 c n≤ ≤ from below,

according to Theorem 2. This can be done in ()2O qn time and ()O qn space. Next,

we need to work out how frequently player i is critical in a coalition of cardinality c,
i.e., how often i turns a losing coalition of cardinality 1c − into a winning one. We
set (), , 0iC n x c− = for all { }0, 1, ..., 1ix w∈ − and all cardinalities { }1, ..., .c n∈ We
loop for x from iw to 1q − in an outer loop and for c from n down to 1 in an inner
loop in order to find

() () (), , 1 , , , ,i i iC n x c C n x c C n x w c− −− = − −

Then, (), , 1iC n x c− − tells us how frequently player i does not belong to a losing
coalition with weight x and cardinality c – 1. We obtain

() ()
1

, , , 1
i

q

i i
x q w

v c C n x cη
−

−
= −

= −

Computing power indices for weighted voting games via dynamic programming

133

In case ()1 ,w q q− + < we compute the matrix () , , C n x c for q x w≤ ≤  and all car-
dinalities 1 c n≤ ≤ from above using the algorithmic concepts from the paper by Kurz [26]
in ()()21O w q n− + time and ()()1O w q n− + space. We set () (), , , ,iC n x c C n x c+ = for

all weights { }1, ...,ix w w w∈ − +  and all cardinalities { }1, ..., .c n∈ We loop for x from

iw w− down to q in an outer loop and for c from 0 to 1n − in an inner loop to find

() () (), , , , , , 1i i iC n x c C n x c C n x w c+ += − + +

Now, (), , iC n x c+ tells us how often player i belongs to a winning coalition with
weight x and cardinality c and we obtain

() ()
1

, , ,
iq w

i i
x q

v c C n x cη
+ −

+
=

= 

We can compute the Public Help index ξ of player i from above in ()2O nΔ time and

()O nΔ space using the quantity (), ,
w

i
x q

C n x c+
=



, i.e., the number of times player i is a part

of a winning coalition of cardinality c. For the computation of null-player free indices
,npf let us assume the n non-negative integer weights in descending order. We find the

number np of non-null players in a preprocessing step as in the proof of Theorem 3.

Setting
1

,
np

np
i

i

w w
=

= we get

()
1

, ,
np npw

np

x q c
W C np x c

= =

=


The number of times a non-null player i is part of a null-player free winning coali-
tion of cardinality c is given as

(), ,
npw

i
x q

C np x c+
=



and we can compute the indices npf for all players in ()2O nΔ time and ()O nΔ space.

 J. STAUDACHER et al.

134

5. Computing power indices based on minimal winning coalitions

Holler [20] argues that in many situations, only minimal winning coalitions will
form, Felsenthal [18] even argues for minimal winning coalitions of least possible
size. As for computing the Public Good index [20] for all players, the best dynamic
programming algorithm in the literature would be ()2 ,O qn finding ,m

iW according

to the textbook [15], p. 235–238, whereas we note that ()
1

1
1,

i

qn
m

i x q w

W T i x
−

= = −

= −  is

computable in ()O qn time. We suggest a new ()O qn approach for the Public Good
index which we carry over to the Felsenthal index [18], and put our new results in the
context of an existing ()2O qn algorithm for the Deegan–Packel index [16] by Uno

[36]. In this and the following section, we assume the positive integer weights of our
n players to be in descending order, i.e., 1 nw w≥ ≥

Definition 2. Let v be an n-player weighted voting game with its positive integer
weights sorted in descending order. For a coalition S, let the operator ()d S remove the
player with the largest index from S. Further, let { }, ...,iR i n= for all 1 .i n≤ ≤ Finally,
let

() ()() (), |{ 2 | , , } |N
iB i x S S R i S w d S x w S= ∈ ⊆ ∈ < ≤

for all 1 i n≤ ≤ and all weights 0 .x q≤ ≤ () ,B i x is the number of coalitions S with i
as the player with the smallest index such that any coalition S has a weight greater or
equal x whereas S without its player with the largest index has the weight less than x.

We observe that (), m
iW B i q= for all players. We can compute B by looping for i

from n to 1, as follows.

Theorem 5. For all 1 i n≤ ≤ and all weights 0 x q≤ ≤ there holds

() () ()1

1 for 1
, 1, 1, for ,

0 otherwise

i

i i i i

x w
B i x B i x w w B i x w x w i n+

≤ ≤
= + − + + + − > <



Computing power indices for weighted voting games via dynamic programming

135

Proof. The statement is true for i n= and ix w≤ . In all other cases the recurrence
relation states that either player 1i + is part of a coalition counted in () , B i x (second
term) or player 1i + is not part of a coalition counted in (),B i x (first term).

1

1

1 1

1

1

(,) |{ 2 | , (1) , (()) ()} |
|{ 2 | , (1) , (()) ()} |

|{ 2 | , (1) , (()) ()} |
|{ 2 | , (1) , (()) ()} |
(1,) (

N
i i

N
i i

N
i i i

N
i i

i i

B i x S S R i S w d S x w w S
S S R i S w d S x w w S

S S R i S w d S x w w w S
S S R i S w d S x w w S

B i x w w B i

+

+

+ +

+

+

= ∈ ⊆ + ∉ < − ≤

+ ∈ ⊆ + ∈ < − ≤

= ∈ ⊆ + ∈ < − + ≤

+ ∈ ⊆ + ∈ < − ≤
= + − + + 1,)ix w+ − 

Theorem 5 can easily be extended for cardinalities of coalitions.

Theorem 6. Let

() ()() (), , |{ 2 | , , , } |N
iB i x c S S R i S S c w d S x w S= ∈ ⊆ ∈ = < ≤

for all 1 ,i n≤ ≤ all weights 0 ,x q≤ ≤ and all cardinalities 0 .c n≤ ≤ There holds

() () ()1

1 for 1 , 1
, , 1, , 1, , 1 for ,

0 otherwise

i

i i i i

x w c
B i x c B i x w w c B i x w c x w i n+

≤ ≤ =
= + − + + + − − > <



 

Proof. The proof is almost identical to the proof of Theorem 5.

Theorem 7. Let v be an n-player weighted voting game with positive integer weights
sorted in descending order. Using T from Theorem 1 and B from Theorem 5, the Public
Good index can be computed in ()O qn time and ()O q memory space for all players as
there holds

() ()
0

1, ,
q

m
i

x
W T i x B i q x

=

= − −

Proof. The claim holds for 1.i = () () ()1 0, 0 1, 1, .mW T B q B q= = In the case 2,i ≥

we abbreviate { }\ 1, ..., 1i iR N R i= = − and observe

 J. STAUDACHER et al.

136

1 2 1 2 2 2 1 2

1 1 2 2 2
0

0

| | |{ 2 | , (() ()}|

|{ 2 | , , , , (()) () ()} |

|{ | () }| |{ | (()) ()} |

(1,) (,)

m N
i

N
i i

q

i i
x

q

x

W S i S w d S q w S

S S S S S R S R i S w d S q w S w S

S R w S x S R w d S q x w S

T i x B i q x

=

=

= ∈ ∈ < ≤

= ∈ = ∪ ⊆ ⊆ ∈ < − ≤

= ⊆ = ⊆ < − ≤

= − −





Algorithmically, we compute ()1,T n x− for all weights according to Theorem 1.

We find our way to () 1, B n x− from () , ,B n x to () 2, T n x− from () 1, ,T n x− and so

on, looping backwards over i until all iW are computed. This can be done in ()O qn

time and ()O q space. 

Theorem 8. Let v be an n-player weighted voting game with positive integer
weights sorted in a descending order. Let m be the size of the smallest minimal winning
coalition. Making use of C from Theorem 2 and B from Theorem 6, the Felsenthal
index can be computed in () O qmn time and ()O qm memory space for all players as
there holds

 () ()
0 0

1, , , ,
q m

s
i

x c

W C i x c B i q x m c
= =

= − − −




Proof. We find { }
1

min{ 1, ..., | }
i

k
k

m i n w q
=

= ∈ ≥ in ()O n time and ()1O memory

space. In working with C and ,B we can restrict our efforts to cardinalities less or equal .m
The rest of the proof is almost identical to the proof of Theorem 7. 

We observe that working out () ()
0 0

1, , , ,
q s

x c

C i x c B i q x s c
= =

− − −  for all possible

cardinalities m s n≤ ≤ will not lead to finding the corresponding numbers of minimal
winning coalitions of all players in ()2O qn time. Uno [36] suggests a recursion related

to B based on reciprocal values. We summarise the algorithm for the Deegan–Packel
index.

Theorem 9 [36]. Let v be an n-player weighted voting game with positive integer
weights sorted in descending order and let

Computing power indices for weighted voting games via dynamic programming

137

 ()
()() (){ 2 | , , }

ˆ 1, ,
N

iS S R i S w d S x w S

B i x c
S c∈ ⊆ ∈ < ≤

=
+

for all 1 ,i n≤ ≤ all weights 0 x q≤ ≤ and all cardinalities 0 .c i≤ ≤ There holds

 () () ()1 rˆ
1 for 1

, , 1, , 1, , 1 fo ,
0 otherwis

ˆ

e

ˆ
i

i i i i

x w

B i x c B i x w w c B i x w c x w i n+

≤ ≤


= + − + + + − + > <



Using C from Theorem 2, the following equality

 () ()
1

0 0

ˆ1, , , ,
q i

m
i

x c

DP W C i x c B i q x c
−

= =

= − −

guarantees that the Deegan–Packel index can be computed in ()2O qn time and ()O qn

memory space for all players. 

6. Computing the Johnston index

As stated in Definition 1, the Johnston index [22] relies on the numbers of critical
players within a vulnerable coalition, i.e., the cardinalities of vulnerable coalitions are

not sufficient to find
() ()

raw

,

1 ,i
S VC i Cr S Cr S

γ
∈ ∈

=  often called the raw Johnston index, for

each player i. The Johnston index is useful in practice, e.g., in indirect control of cor-
porations [11, 30, 31] where problems are typically large and brute force calculation
is not feasible. However, there exist neither dynamic programming algorithms nor has
the Johnston index been tackled via quasi-ordered binary decision diagrams in [14].
Also, we are not aware of approximation algorithms. Our new approach for the John-
ston index hinges on the critical player i with the largest index in a vulnerable coalition
S. Once we remove all players with larger indices from S, we either end up with a
minimal winning coalition with a surplus ()w S qσ = − or with a losing coalition with

a deficiency ().q w Sδ = − We would now like to constructively work out how
dummy players, i.e., non-critical players (with indices larger than i), can be added to
the coalition S.

 J. STAUDACHER et al.

138

Definition 3. We assume n positive integer weights in descending order, i.e.,
1 nw w≥ ≥ We input these weights in reverse order into the recursion from Theorem 1 to

obtain ()* , T i x for all { }0, ..., 1i n∈ − and all { }0, ..., 1x q∈ − (with the notation *T
supposed to indicate that we simply obtain T from Theorem 1 but input the weights
for T in reverse order). We define { } { }: 0, ..., 0, ...,I q n→ with

 () { }min{ 1, ..., | } 1iI k n i n w k= − ∈ ≥ +

for 1 k n≤ ≤ and ()0 0.I =
Let us construct vulnerable coalitions S such that i is the critical player with the largest

index, i.e., there is no critical player in S with a weight less than .iw If S is minimal winning,

then there is a surplus ()w S qσ = − and we have ()()
1

*

0
,

iw

l

T I l l
σ− −

=
 ways to obtain vulnera-

ble coalitions. If S is losing with a deficiency () ,q w Sδ = − there are

()()
1

1

* ,
iw

l

T I l l
δ

δ
δ

+ −

= +

− ways to construct vulnerable coalitions. In the latter formula, the upper

bound 1iw δ+ − guarantees that i remains critical. An example appears to be appropriate.

Example 4. We revisit the 5-player weighted voting game with weights 1 4,w = 2 3,w =

3 4 5 1,w w w= = = and quota 6q = from Example 1. One easily confirms that ()* 0, 0 1,T =
T*(1, 1) = 1, T*(2, 1) = 2, T*(2, 2) = 1, T*(3, 1) = T*(3, 2) = 3, T*(3, 3) = 1, T*(4, 1)
= T*(4, 2) = 3, T*(4, 3) = 2, T*(4, 4) = T*(4, 5) = 3, and T*(i, x) = 0 for all other { }0, ..., 1i n∈ −

and { }0, ..., 1 .x q∈ − For the computation of the raw Johnston indices of players 3, 4, and 5,

only the minimal winning coalitions { }1, 3, 4 , { }1, 3, 5 , { }1, 4, 5 , and { }2, 3, 4, 5 matter

and we obtain raw raw raw
3 4 5

1 1 112 1 .
3 4 12

γ γ γ= = = × + × = As for the minimal winning coalition

{ }1, 2 , its surplus is { }()1, 2 6 1,wσ = − = and we obtain

 ()() () ()
3 1 1

* * *

0
, 0, 0 3,1 1 3 4

l

T I l l T T
− −

=

= + = + =

corresponding vulnerable coalitions, reflecting { }1, 2 itself as well as { }1, 2, 3 , { }1, 2, 4 ,

and { }1, 2, 5 . As for the losing coalition { }1 , its deficiency is { }()6 1 2,wδ = − = pointing

Computing power indices for weighted voting games via dynamic programming

139

to ()()
4 2 1

*

2 1
2 ,

l

T I l l
+ −

= +

− ()* 3, 3T= () ()* *3, 4 4, 5 1 0 3 4T T+ + = + + = vulnerable coali-

tions with a player 1 as the only critical player, with ()* 3, 3 1T = reflecting the coalition

{ }1, 3, 4, 5 and ()* 4, 5 3,T = reflecting the coalitions { }1, 2, 3, 4 , { }1, 2, 3, 5 , and

{ }1, 2, 4, 5 . Our calculations confirm raw
1

1 14 1 4 3 7
2 3

γ = × + × + × = and raw
2

14
2

γ = ×

11 2.25.
4

+ × = 

This insight enables us to formulate a practical method for the Johnston index by
proving:

Theorem 10. For a weighted voting game v with n players, the Johnston index can
be computed in ()3O qn time and ()O qn memory space for all players.

Proof. Let the weights be sorted in descending order, and 1w q< for otherwise

1 1,γ = 2 ... 0.nγ γ= = = Let us work out () ,iE c the number of vulnerable coalitions S
with c critical players with ().i Cr S∈ Let (),i jE c abbreviate the number of vulnerable

coalitions S with c critical players with (),i j Cr S∈ and j the critical player with the

largest index. By (),
ˆ

i jE c and (), ,i jE c we distinguish those coalitions that remain win-
ning or become losing coalitions after the removal of all non-critical players, respec-
tively. Using the values *T from Definition 3, we precompute

 () ()()
1

*

1
, ,

iw

l

D j T I l l
δ

δ
δ δ

+ −

= +

= −

for all players 1 j n≤ ≤ and all deficiencies { }11, ..., 1q wδ ∈ − − and

 () ()()*

0

,
x

l

U x T I l l
=

=

for all { }11, ..., 1 .x w∈ − We make use of ()1, ,C i x c− from Theorem 2, and find (),i iE c

() (), ,
ˆ

i i i iE c E c= + via

 () () ()
1

,
0

1, , 1 ,
iq w

i i i
x

E c C i x c D i q x w
− −

=

= − − − −

 J. STAUDACHER et al.

140

as a coalition of weight ix w q+ < has deficiency ,iq x wδ = − − and

() () ()
1

, 1ˆ 1, , 1
i

q

i i
x q w

E c C i x c U q x
−

= −

= − − − −

as a coalition of weight ix w q+ ≥ has surplus ix w qσ = + − making our argument for U
above 1 1.iw q xσ− − = − − To find (),i jE c for all i j n< ≤ we need the values

(), ,iC j x− ⋅ obtained as in Theorem 2 from the weights 1 1 1, ..., , , ..., .i i nw w w w− + We can
compute these values iteratively, starting from ()1, ,C i x− updating a corresponding ma-

trix in a loop for j from 1i + to n which we use to work out () () (), , , .ˆ
i j i j i jE c E c E c= + As

before, we find

() () ()
1

,
0

1, , 2 ,
i jq w w

i j i i j
x

E c C j x c D j q x w w
− − −

−
=

= − − − − −

as a coalition of weight i jx w w q+ + < has deficiency ,i jq x w wδ = − − − and

() () ()
1

, 1ˆ 1, , 2
i

i j

q w

i j i i
x q w w

E c C j x c U q x w
− −

−
= − −

= − − − − −

as a coalition of weight i jx w w q+ + ≥ has surplus ,i jx w w qσ = + + − making our ar-

gument for U above 1 1.j iw q x wσ− − = − − − We compute () (),

n

i i j
j i

E c E c
=

= for

player i in ()2O qn time and ()O qn space. For all players we need ()3O qn time and

()O qn space. 

7. The software EPIC and numerical results

We introduce a powerful software package named Efficient Power Index Compu-
tation (EPIC) providing efficient C++ implementations of all 12 power indices dis-
cussed in this article. In addition, scaled or unscaled variants of these indices, e.g., the
relative Banzhaf, the raw Johnston index, and quantities like ,W ,npW ,mW ,sW

and () ,i vη ,iW ,np
iW ,m

iW s
iW for all players, are available. The software was

Computing power indices for weighted voting games via dynamic programming

141

tested extensively under MS Windows and Ubuntu Linux. The software is publicly
available on GitHub at https://github.com/jhstaudacher/EPIC.

EPIC carefully deals with plenty of issues excluded from the previous sections to
make our presentation more readable. Players with weight 0 are handled in a prepro-
cessing step, and so is the case of a single player with weight greater or equal q. EPIC

will throw an error message for negative weights and for
2
wq ≤


. By setting a flag, users

can find and pre-process null players efficiently, aiming to reduce the size of a power
index computation. Currently, we do not use any sophisticated approach for finding
minimum sum integer representations of games. We only shrink weights and quotas
using the greatest common divisor. Games with non-negative floating point weights (or
quotas) will be converted to integer representations, according to Kurz [26]. Weighted
voting games can be specified as comma separated values (CSV) files, employing a sim-
ple and widely used data format that allows users to edit input files using notepad, MS
Excel, and many other text editors. EPIC can be used interactively via an R interface
available at https://github.com/jhstaudacher/EPIC-R.

For the arbitrary-precision arithmetic parts, EPIC uses the GMP-library [19], i.e.,
the GNU Multiple Precision Arithmetic Library. GMP [19] is a very widely used,
established, and well-tested library for handling very large integers. Internally, large
integers in EPIC are either represented as a 64-bit unsigned integer if our numbers are
small enough or a pointer to a GMP object for large integers (allocating memory eco-
nomically for very large problems) or an array of l integers representing a large integer
through l coprimes. The latter follows the idea by Kurz [26] and employs the Chinese
remainder theorem to perform the most frequently used basic operations using stand-
ard data types. EPIC analyses the problem, and can then adaptively choose l different

coprimes 1, ..., lp p such that all integers to be processed lie between 0 and
1

.1
l

j
j

p
=

− + ∏

All basic operations can then be computed modulo jp for all 1 .j l≤ ≤ In the end, we
can recover the actual large integer computed via the Chinese remainder theorem. How-
ever, we find this approach faster as compared to simply using GMP only when no more
than 4l = coprimes are needed. (Note that our findings do not contradict the study by
Kurz [26] who computes the Banzhaf and Shapley–Shubik indices for the IMF problem
with 188 players using 3l = primes.) On a 64-bit system using GMP within our soft-
ware architecture requires at least 4 times the storage of a 64-bit unsigned integer (8
Byte) and will normally save memory once more than 4l = coprimes would be needed.
By default, EPIC switches to relying entirely on GMP in that case. Users can override
the default by setting flags enforcing either the use of coprimes or GMP for processing
large integers.

 J. STAUDACHER et al.

142

Table 1. Computing times and memory requirements for an example with 150 players
with uniformly distributed weights, q = 35 951, w = 71 901

Index Time
[s]

Memory
[MB]

No. of coprimes
or GMP Complexity

Banzhaf 0.14 9.04 3 ()O nΔ

Deegan–Packel 51.22 217.73 3 ()2O qn

Felsenthal 26.41 181.39 GMP ()O qmn

Johnston 5942.84 636.29 GMP ()3O qn

König–Bräuninger 0.19 9.04 3 ()O nΔ

Nevison 0.19 9.04 3 ()O nΔ

Null-player free index f np 29.93 346.80 3 ()2O nΔ

Null-player free index gnp 0.19 9.04 3 ()O nΔ

Public Good 0.38 13.03 GMP ()O qn

Public Help θ 0.19 9.04 3 ()O nΔ

Public Help ξ 29.72 346.80 3 ()2O nΔ

Shapley–Shubik 19.77 346.80 3 ()2O nΔ

Data available at https://github.com/jhstaudacher/EPIC/blob/master/test_cases/uniform/uniform. n150.
q35951.csv

Table 2. Computing times and memory requirements for “limit tests” for a series of problems

with a fixed quota q = 100 000 and w = 199 999

Index No. of
players (n)

Time
[s]

Memory
[MB]

No. of coprimes
 or GMP Complexity

Banzhaf 2000 33.48 54.63 GMP ()O nΔ

Deegan–Packel 900 2472.80 7495.88 GMP ()2O qn

Felsenthal 800 2994.23 3532.79 GMP ()O qmn

Johnston 60 2572.48 332.62 2 ()3O qn

Public Good 2000 72.37 82.43 GMP ()O qn

Public Help ξ 600 2639.00 8187.70 GMP ()2O nΔ

Shapley–Shubik 600 2097.35 8183.35 GMP ()2O nΔ

We report the number of players (up to 2000) that can be processed within one hour for selected indices.
Data and R-code available at https://github.com/jhstaudacher/EPIC/tree/master/test_cases/linear_range
_test_cases

Computing power indices for weighted voting games via dynamic programming

143

The numerical results in Table 1 and Table 2 are obtained under Ubuntu 20.04 focal
(64-bit) on an AMD FX(tm)-4170 Quad-Core CPU with a clock speed of 4.20 GHz and
8 GB RAM, i.e., on a standard laptop PC. In both tables the column No. of coprimes or
GMP reflects the default described in the previous paragraph. Only if no more than

4l = coprimes are needed, then we use the Chinese remainder theorem. Banzhaf and
Shapley–Shubik indices are by default computed from above, as explained in the proofs
of Theorem 3 and Theorem 4, respectively. For König-Bräuninger, Nevison, npg , and
Public Help θ we employ the identity by Dubey and Shapley [17] for computing

()()0.5i iW W vη= + by default, as we find it to need less arithmetic operations, and

thus be faster than the alternative formula (),
w

i i
x q

W T n x+
=

=


 (which can optionally be

selected by the user) in most cases. For the problem in Table 1, i.e., for a weighted
voting game with uniformly distributed weights, quota 35951q = , 71901w = , an aver-
age weight of 479.34 and a median weight of 500.5 , the computing times for these
four indices, though as expected slightly larger than for Banzhaf, are negligible, and the
same is true for the Public Good index. The larger computing times for Public Help ξ
and npf as compared to Shapley–Shubik reflect the summations for x from q to w
rather than from q to 1,iq w+ − as pointed out at the end of the proof of Theorem 4.
For the Public Good, Felsenthal, and Johnston indices we need the multiplication oper-
ation, and hence 5 coprimes would be necessary for our 150 player problem since the
coprimes must be less or equal 322 so that the product of the largest possible numbers
still fits into an unsigned 64-bit integer variable. By default, EPIC switches to relying
entirely on GMP in that case. For Table 2 we construct a series of problems with a fixed
quota q = 100 000 and w = 199 999. For selected indices, we approximate the number
of players that can be processed within one hour in 10 steps for up to 100 players and
100 steps for up to 2000 players. Our new algorithm for the Public Good index can
handle 2000 player problems in just over one minute.

8. Conclusions

We provide efficient algorithms and a powerful software package for the exact com-
putation of power indices. We assume the software to be helpful not only for analysing
voting situations but also for broadening the appeal of power indices for network anal-
ysis. Our new ()O qn algorithm for the Public Good index can easily handle more than
1000 players, allowing us to extend the recent study by Holler and Rupp [21] to much
larger networks. Our new ()3O qn algorithm makes the Johnston index applicable for

 J. STAUDACHER et al.

144

analysing indirect control in larger corporate networks [11, 30, 31]. While the availabil-
ity of such efficient algorithms is encouraging, the calculation of some indices, such as
the strategic power indices by Kóczy [25], remains an open problem. In terms of algo-
rithms, it will be interesting to compare dynamic programming to computing power
indices via quasi-ordered binary decision diagrams, a recent approach based on rela-
tional algebra [5, 6, 13, 14]. Finally, the interplay between dynamic programming and
generating functions deserves further attention as we expect these two areas to be very
fruitful for each other, e.g., in developing even faster algorithms.

Acknowledgements

The authors would like to thank Sascha Kurz (University of Bayreuth) for the code he used for [26],
publicly available via ResearchGate, and for allowing them to use it as a sample for their software. The first
author thanks the funding of the Bavarian State Ministry of Science and Arts. The second author thanks the
funding of the National Research, Development and Innovations Office (NKFIH, K-128573).

References

[1] ALGABA E., BILBAO J.M., GARCIA J.F., LÓPEZ J., Computing power indices in weighted multiple ma-
jority games, Math. Soc. Sci., 2003, 46 (1), 63–80.

[2] ALGABA E., BILBAO J.M., FERNÁNDEZ J.R., The distribution of power in the European Constitution,
Eur. J. Oper. Res., 2007, 176 (3), 1752–1766.

[3] ÁLVAREZ-MOZOS M., FERREIRA F., ALONSO-MEIJIDE J.M., PINTO A.A., Characterizations of power in-
dices based on null player free winning coalitions, Optimization, 2015, 64 (3), 675–686.

[4] BANZHAF J.F., Weighted voting doesn’t work: A mathematical analysis, Rutgers Law Rev., 1965, 19,
317.

[5] BERGHAMMER R., BOLUS S., RUSINOWSKA A., DE SWART H., A relation-algebraic approach to simple
games, Eur. J. Oper. Res., 2011, 210 (1), 68–80.

[6] BERGHAMMER R., BOLUS S., On the use of binary decision diagrams for solving problems on simple
games, Eur. J. Oper. Res., 2012, 222 (3), 529–541.

[7] BERTINI C., GAMBARELLI G., STACH I., A Public Help index, [In:] M. Braham, F. Steffen (Eds.), Power,
freedom, and voting, Springer, Berlin 2008, 83–98.

[8] BERTINI C., STACH I., Banzhaf voting power measure, [In:] K. Dowding (Ed.), Encyclopedia of Power,
SAGE, Los Angeles 2011, 54.

[9] BERTINI C., FREIXAS J., GAMBARELLI G., STACH I., Comparing power indices, Int. Game Theory Rev.,
2013, 15 (2), 1340004.

[10] BERTINI C., STACH I., On public values and power indices, Dec. Mak. Manuf. Serv., 2015, 9 (1), 9–25.
[11] BERTINI C., MERCIK J., STACH I., Indirect control and power, Oper. Res. Dec., 2016, 26 (2), 7–30.
[12] BILBAO J.M., FERNANDEZ J.R., JIMÉNEZ LOSADA A., LOPEZ J.J., Generating functions for computing

power indices efficiently, Top, 2000, 8 (2), 191–213.
[13] BOLUS S., Power indices of simple games and vector-weighted majority games by means of binary

decision diagrams, Eur. J. Oper. Res., 2011, 210 (2), 258–272.
[14] BOLUS S., A QOBDD-based approach to simple games, PhD thesis, Christian-Albrechts Universität

Kiel, Kiel 2012.

Computing power indices for weighted voting games via dynamic programming

145

[15] CHAKRAVARTY S.R., MITRA M., SARKAR P., A Course on Cooperative Game Theory, Cambridge Uni-
versity Press, Cambridge 2015.

[16] DEEGAN J., PACKEL E.W., A new index of power for simple n-person games, Int. J. Game Theory, 1978,
7 (2), 113–123.

[17] DUBEY P., SHAPLEY L.S., Mathematical properties of the Banzhaf power index, Math. Oper. Res.,
1979, 4 (2), 99–131.

[18] FELSENTHAL D.S., A well-behaved index of a priori p-power for simple n-person games, Homo Oecon.,
2016, 33 (4), 367–381.

[19] https://gmplib.org/ (URL consulted in November 2020).
[20] HOLLER M.J., Forming coalitions and measuring voting power, Pol. Studies, 1982, 30 (2), 262–271.
[21] HOLLER M.J., RUPP F., Power in networks. A PGI analysis of Krackhardt’s kite network, Springer

Lecture Notes in Computer Science 11890, 2019, 21–34.
[22] JOHNSTON R.J., On the measurement of power. Some reactions to Laver, Environ. Plan. A, 1978, 10

(8), 907–914.
[23] KÖNIG T., BRÄUNINGER T., The inclusiveness of European decision rules, J. Theor. Pol., 1998, 10 (1),

125–142.
[24] KÓCZY L.Á., Beyond Lisbon. Demographic trends and voting power in the European Union Council

of Ministers, Math. Soc. Sci., 2012, 63 (2), 152–158.
[25] KÓCZY L.Á., Power indices when players can commit to reject coalitions, Homo Oecon., 2016, 33

(1–2), 77–91.
[26] KURZ S., Computing the power distribution in the IMF, arXiv preprint, Comp. Sci. Game Theeory,

2016, arXiv: 1603.01443.
[27] LUCCHETTI R., RADRIZZANI P., Microarray data analysis via weighted indices and weighted majority

games, [In:] F. Masulli, L.E. Peterson, R. Tagliaferri (Eds.), International meeting on computational
intelligence methods for bioinformatics and biostatistics, Springer, Berlin 2009, 179–190.

[28] MATSUI T., MATSUI Y., A survey of algorithms for calculating power indices of weighted majority
games, J. Oper. Res. Soc. Japan, 2000, 43 (1), 71–86.

[29] MATSUI Y., MATSUI T., NP-completeness for calculating power indices of weighted majority games,
Theor. Comp. Sci., 2001, 263 (1–2), 305–310.

[30] MERCIK J., LOBOS K., Index of implicit power as a measure of reciprocal ownership, Springer Lecture
Notes in Computer Science 9760, 2016, 128–140.

[31] MERCIK J., STACH I., On measurement of control in corporate structures, Springer Lecture Notes in
Computer Science 11290, 2018, 64–79.

[32] NEVISON H., Structural power and satisfaction in simple games, [In:] S.J. Brams, A. Schotter,
G. Schwödiauer (Eds.), Appl. Game Theory, Phys., Heidelberg 1979, 39–57.

[33] SHAPLEY L.S., SHUBIK M., A method for evaluating the distribution of power in a committee system,
Amer. Pol. Sci. Rev., 1954, 48 (3), 787–792.

[34] STACH I., Shapley–Shubik index, [In:] K. Dowding (Ed.), Encyclopedia of Power, SAGE, Los Angeles
2011, 603–606.

[35] TANENBAUM P., Power in weighted voting games, Math. J., 1997, 7, 58–63.
[36] UNO T., Efficient computation of power indices for weighted majority games, Springer Lecture Notes

in Computer Science 7676, 2012, 679–689.

