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We consider an M/M/1 queue where beneficiary visits occur singly. Once the beneficiary level in 
the system becomes zero, the server takes a vacation at once. If the server finds no beneficiaries in the 
system, then the server can take another vacation after the return from the vacation. This process con-
tinues until the server has exhaustively taken all the J vacations. The closed form transient solution of 
the considered model and some important time-dependent performance measures are obtained. Further, 
the steady state system size distribution is obtained from the time-dependent solution. A stochastic 
decomposition structure of waiting time distribution and expression for the additional waiting time due 
to the presence of server vacations are studied. Numerical assessments are presented. 
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1. Introduction 

From the works of Levy and Yechiali [12], new kind of queueing models, namely 
vacation queueing models, are started. Due to the plenty of applications of these models 
in the field of communication, computer networks, and production systems, etc., the 
models have drawn notice of many authors. The prime surveys on these vacation queue-
ing models are Doshi [5] and Teghem [13]. Takagi [23] and Tian and Zhang [24] pub-
lished books devoted to this topic. Readers may see the two surveys by Ke et al. [10] 
and Upadhyaya [25] on vacation queueing models and the references therein. 

Two types of vacation schemes are discussed in the literature, namely a single vaca- 
tion scheme, and a multiple vacation scheme. In the above schemes, the server halts the 
service process when the server is on vacation. Servi and Finn [16] introduce the 
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working vacation scheme in which the server provides service to the beneficiaries even 
when the server is on vacation but at a different rate which is slower than the normal 
service rate. This vacation scheme has attracted a lot of authors and thus has led to 
numerous research works. We recommend the survey paper [4] to view the various 
queues extended with this type of vacation studied by various researchers up to 2016. 

Zhang and Tian [28] propose a variant of multiple vacation policy. In the model, 
the server is allowed to take a maximum number of K vacations consecutively, and then 
the server remains idle in the system. Works with this kind of policy with additional 
impressions of bulk entry, balking, N-policy, and beneficiaries’ impatience can be found, 
in Banik [3], Ke [9], Ke et al. [11], and Yue et al. [27]. Pikkala and Pilla [15] study the 
transient behaviour of  M/M/1 variant working vacation queues with balking customers. 

Despite that various authors discussed the transient solution of queueing systems in 
the literature of vacation queueing systems, they rather see steady-state discussions with 
various policies than the time-dependent solution. Kalidass and Ramanath [8] analyze 
the time-dependent solution of queues with server vacations and a waiting server. Kali-
dass et al. [7] study the transient analysis of a Markovian single server queue with a re-
pairable server and multiple vacations. Ammar [1] discusses the transient solution of 
single server multiple vacation queues with impatient customers. Ammar [2] extends the 
work of [1] by adding the possibility of beneficiaries impatience. Sudhesh and Francis 
Raj [19] discuss the transient distribution of a single server queue with working vaca-
tions. With impatient beneficiaries, Sudhesh et al. [18] extend the work of [19]. Sudhesh 
and Azhagappan [17] attain the transient solution of single server Markovian working 
vacation queueing models with variant impatient behaviour. Suranga Sampath and Ka-
lidass [21] extend the results of [19] and incorporate them with server failures. 

Ibe and Isijola [6] discuss a new kind of multiple vacation queueing model where 
the server is permitted to take two different vacations in which the duration of the second 
vacation is lesser than the first one. The transient solution of the model discussed in [6] 
is carried out by Vijayashree and Janani [26]. Later, Sampath and Liu [20] analyse the 
impact of beneficiary’s impatience in [24]. The transient solution of M/M/1 queue with 
differentiated vacations and impatient beneficiaries can be found in [22] in which the 
server takes a vacation after a random waiting time after every end of the busy periods. 

Anesthesiologists are physicians who play an important role in clinical practice of 
surgery, and they provide continuous medical care before, during, and after surgery, 
which is their primary job, and there many supplementary tasks, to mention a few, to 
maintain medical records, to prepare medical history of admitted patients, etc. Planned 
surgeries in many specialist hospitals are performed in succession. When all scheduled 
surgeries are completed and if there are no primary tasks, they decide to complete the 
additional task of preparing a record of the patient’s medical histories. After completing 
this additional task, they start to do the primary job, if any awaiting, or decide to complete 
another additional task of placing order procedures to buy laboratory equipment, X-rays, 
and other types of medical equipment. Upon completing this additional task, they 
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continue with the primary work (if any), otherwise they decide to complete another task 
that teaches students and staff the types and methods of anesthesia administration, the 
symptoms of complications, and the emergency procedures to deal with them. All of 
these additional tasks listed above complete the above process. When all additional tasks 
are completed, he/she is waiting for the primary work. 

Consider the situation in the post office counter clerk. The clerk’s main respon- 
sibility is to liaise with beneficiaries by booking posts, selling stamps, and answering, 
if beneficiaries need. Once he/she completes service to all the beneficiaries in front of 
the desk, he/she decides to complete one of the secondary tasks, such as preparing and 
completing bills, completing the daily, weekly, and monthly balance of the accounts 
spreadsheet and sorting. After completion one of the secondary tasks listed above, if 
beneficiaries awaiting the desk, the clerk starts to provide the primary service. 
Otherwise, the clerk decides to complete one of the remaining secondary tasks. The 
clerk continues the above process until completing all his/her secondary tasks. When all 
the secondary tasks are finished, the clerk simply waits in the service desk for new 
arrivals. 

With the motivation of the above real-life examples, Markovian single server 
queuing models with multiple variant vacations are considered here. The paper is sys- 
temised as follows. Our queueing model is described in Section 2. The time-dependent 
solution and some prime performance measures in the time-dependent scenario are 
presented in Sections 3 and 4, respectively. Steady-state solution derived from the 
solution discussed in Section 3 is given in Section 5 with the stochastic decomposition 
structure. Distribution of waiting time of beneficiaries in the system is analysed in 
Section 6. The subsequent Sections 7 and 8 include the numerical discussion on the 
findings and concluding remarks, respectively. 

2. The system description  

Single server Markovian queueing systems with Poisson arrival beneficiaries J and 
multiple vacation policies are considered. Assumptions are as follows: 

• Beneficiaries join singly in the waiting line. The interarrival times are inde-
pendently, identically, and exponentially distributed with the parameter λ. 

• The service takes place singly, and is provided by the single server to the first in 
the queue. The service times are assumed to be distributed according to an exponential 
distribution with mean 1/μ. 

• After the end of every busy period, the server goes on vacation when the number 
of waiting beneficiaries is zero. If there is at least one beneficiary at vacation completion 
time, the server provides service to the beneficiary immediately. Otherwise, the situation 
lasted a maximum number of J vacations, and then the server remains in the service 
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facility to serve beneficiaries. The vacation times are assumed to be exponentially dis- 
tributed with an intensity of γ. 

• The inter-arrival times, service times, and vacation times are assumed to be 
independent of each other. 

• Let K(t) denote the number of beneficiaries in the system at time t. 
• Let S(t) be the status of the server at time t, which is defined as follows: 
S(t) = vi if the server is in ith vacation and i = 0, 1, ..., j – 1. 
S(t) = B if the server is busy or idle. 
Then the bivariate process {(K(t), S(t)), t ≥ 0} confines a continuous-time Markov 

process with state space 

( ){ } 0 1 1, : 0, , , , ..., jm i m i B v v vΔ −= ≥ =   

Let qm,i (t) be the probability to m beneficiaries in the system and the service provider 
is in ith state. We assume that the server is in the first vacation and zero beneficiaries in 
the system at time t = 0. 

 
Fig. 1. State transition diagram 
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The system of Kolmogorov differential difference equations is given by 

 ( ) ( )
0 00, 0, 1,( ) ( )v v Bq t q t q tλ γ μ′ = − + +   (1) 

 ( )
0 0 0, , 1,( ) ( ) ( ), 1n v n v n vq t q t q t nλ γ λ −′ = − + + ≥   (2) 

 ( )
10, 0, 0,( ) ( ) ( )

i i iv v vq t q t q tλ γ γ
−

′ = − + +   (3) 

 ( ), , 1,( ) ( ) ( ), 1, 1, 2, ..., 1
i i in v n v n vq t q t q t n i Jλ γ λ −′ = − + + ≥ = −   (4) 

 
10, 0, 0,( ) ( ) ( )

JB B vq t q t q tλ γ
−

′ = − +   (5) 

 ( )
1

, , 1, 1, ,
0

( ) ( ) ( ) ( ) ( ), 1
i

J

n B n B n B n B n V
i

q t q t q t q t q t nλ μ λ μ γ
−

− +
=

′ = − + + + + ≥   (6) 

with the initial conditions 
00, ,(0) 1, (0) 0, 0,

iv n vq q n= = ∀ ≥ i =1, 2, ..., J – 1, 0, (0) 0,
nvq =  

,1, (0) 0, 0.n Bn q n∀ ≥ = ≥  

3. The transient solution 

Let *
, ( )n iq s be the Laplace transform of , ( ), 0 and 0, 1, ..., 1.n iq t n i J≥ = −  Taking 

the Laplace transform of (1)–(6) gives 

 ( )
0 0 0

* * *
0, 0, 0, 1,( ) (0) ( ) ( )v v v Bsq s q q s q sλ γ μ− = − + +   (7) 

 ( )
0 0 0 0

* * *
, , , 1,( ) (0) ( ) ( ), 1n v n v n v n vsq s q q s q s nλ γ λ −− = − + + ≥   (8) 

 ( )
1

* * *
0, 0, 0, 0,( ) (0) ( ) ( ), 1, 2, ..., 1

i i i iv v v vsq s q q s q s i Jλ γ γ
−

− = − + + = −   (9) 

 ( )* * *
, , , 1,( ) (0) ( ) ( ), 1, 2, ..., 1, 1

i i i in v n v n v n vsq s q q s q s i J nλ γ λ −− = − + + = − ≥   (10) 

 
1

* * *
0, 0, 0, 0,( ) (0) ( ) ( )

JB B B vsq s q q s q sλ γ
−

− = − +   (11) 
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( )* * * *
, , , 1, 1,

1
*

,
0

( ) (0) ( ) ( ) ( )

( ), 1
i

n B n B n B n B n B

J

n v
i

sq s q q s q s q s

q s n

λ μ λ μ

γ

− +

−

=

− = − + + +

+ ≥
  

(12)
 

Equation (7) gives 

 
0

* *
0, 1,

1( ) ( )v Bq s q s
s s

μ
λ γ λ γ

= +
+ + + +

  (13) 

Similarly, from (8), we get  

 
0 0

* *
, 1,( ) ( ), 1n v n vq s q s n

s
λ
λ γ −= ≥

+ +
  (14) 

which recursively gives 

 
0 0

* *
, 0,( ) ( ), 1

n

n v vq s q s n
s

λ
λ γ

 = ≥ + + 
  (15) 

Substituting (13) into (15), we get 

 
( ) ( )0

* *
, 1,1 1( ) ( ), 1

n n

n v Bn nq s q s n
s s

λ λ μ
λ γ λ γ+ += + ≥

+ + + +
  (16) 

Also, from (9), we get 

 
1

* *
0, 0,( ) ( ), 1, 2, ..., 1

i iv vq s q s i J
s

γ
λ γ −

= = −
+ +

 (17)  

From (10), we get 

 * *
, 1,( ) ( ), 1

i in v n vq s q s n
s

λ
λ γ −= ≥

+ +
  (18) 

which recursively gives 

 
( ) 1

* *
, 0,1( ) ( ), 1, 1, 2, ..., 1

i i

n

n v vnq s q s n i J
s

λ γ
λ γ −+= ≥ = −

+ +
  (19) 
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After some algebra, 

 
( ) ( )

* *
, 1,1 1( ) ( ), 1, 2, ..., 1

i

n i n i

n v Bn i n iq s q s i J
s s

λ γ λ γ μ
λ γ λ γ+ + + += + = −

+ + + +
  (20) 

(11) is modified as 

1

* *
0, 0,( ) ( )

JB vq s q s
s

γ
λ −

=
+

  

From (13) and (17), we get 

 
( ) ( )

( )* *
0. 1,( ) 1 ( )

J

B BJq s q s
s s

γ μ
λ λ γ

= +
+ + +

  (21) 

Inverse Laplace transform on both sides of equations (17) and (20), we get 

 ( )
( )

( )
( ) ( ), 1,( ) e e ,

! !

0, 0,1, ..., 1

i

n i n i
t tn i n i

n v B
t tq t q t

n i n i

n i J

λ γ λ γλ γ λ γ μ
+ +

− + − + 
= +  + + 

≥ = −


  (22) 

where ⋆  represents convolution. 
Define the partial probability generating function 

( ) ,
1

, ( ) n
B n B

n

Q z t q t z
∞

=

=   

then 

( ) ( ),
1

, nB
n B

n

Q z t
q t z

t

∞

=

∂ ′=
∂    

Multiplying and summing (12) by appropriate zn gives 

( ) ( )
1

* * * *
1, 1, ,

1 1 1 0
, ( ) ( ) ( )

i

J
n n n

B n B n B n v
n n n i

s Q z s q s z q s z q s zλ μ λ μ γ
∞ ∞ ∞ −

− +
= = = =

+ + = + +     
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( ) ( )
( )

1
* * * *

0, 1, ,2
1 0

, ( ) ( )
i

J
n

B B B n v
n i

zQ z s zq s q s q s z
z s z

λ μ γ
λ λ μ μ

∞ −

= =

 
= − + 

− + + + −  
   

where ( )* ,BQ z s  is the Laplace transform of ( ), .BQ z t   
Since the denominator of the above equation vanishes at 

2

1
4

2
z

ω ω λμ
λ

− −
=   

where ω = s + λ + μ, we have 𝜆𝑧ଵ𝑞଴,஻∗ (𝑠) − 𝜇𝑞ଵ,஻∗ (𝑠) + 𝛾෍ஶ௡ୀଵ ෍
௃ିଵ
௜ୀ଴ 𝑞௡,௩೔∗ (𝑠)𝑧ଵ௡ = 0 

From this, 

 
( ) ( )

( ) ( )

* *1 1
1, 1,

1 1

1 1

*1
1,

1

0 ( ) ( )

1 1

1 1 ( )
1

J J

B B

J

J

B

z zq s q s
s s s s

z z
s s z s s z s

z q s
s s z s

λ γ λ γμ μ
λ λ γ λ λ γ

λ γ λ γ γ
λ λ γ λ λ γ λ γ

λ γ γ μ
λ λ γ λ γ

   = − −   + + + + + +   

     − +     + + − + + + − + + +    

    − − +     + + − + + +   

 

(23)

 

After some algebra, 

( ) ( )

( ) ( )

*
1,

1

1 1

1

1 1

1( )

1 1

1
1 1

B

J J

J J

q s

z
s s s z s z s

z
s s s z s z s

μ

λ γ γ γ γ
λ λ γ λ γ λ γ λ γ

λ γ γ γ γ
λ λ γ λ γ λ γ λ γ

=

      + −     + + + + − + + − + + +     ×       − + −      + + + + − + + − + + +     

  

(24)
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*

*
1, *

1 ( )( )
1 ( )B

g sq s
g sμ

 
=  

− 
  (25) 

where 

 
( ) ( )

* 1

1 1
( )

1 1

J Jzg s
s s s z s z s
λ γ γ γ γ

λ λ γ λ γ λ γ λ γ
    = + −     + + + + − + + − + + +    

 

 (26) 

Then *
1, ( )Bq s  takes the form of 

 ( ) ( )* * * *
1,

0 1

1 1( ) ( ) ( ) ( )
d d

B
d d

q s g s g s g s
μ μ

∞ ∞

= =

= =    (27) 

By inverting the above, we get 

 ( )1,
1

1( ) ( ) d
B

d

q t g t
μ

∞

=

=     (28) 

where ( )( ) dg t  represents the d-fold convolution of g(t), 

( ) ( )
( )

( )

( ) ( )

( )
( )

( ) ( )

1

1

1
0

1

1
0

1( ) e e e
1 !

2 2 1 e
2

2 2 1e e
1 ! 2

J
t tt J

m
t

m
m

mJ
t tJ

m
m

tg t I t
t J

m I t
t

t m I t
J t

λ μ λ γλ

λ μ

λ γ λ μ

λ α γ
β

γ α γ α
α λ α

γ α γγ α
α λ α

−
− + − +−

∞
− +

+
=

− ∞
− + − +

+
=

 =   − 

+   + −   
   

+   − −     −     





 



  

(29)

 

Derivation of qn,B (t): Multiplying the appropriate zn with (12), we get 
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( ) ( ) ( ) 0, 1,

1

,
1 0

,
, ( ) ( )

( )
i

B
B B B

J
n

n v
n i

Q z t
z Q z t zq t q t

t z

q t z

μλ μ λ λ μ

γ
∞ −

= =

∂  − − + + + = − ∂  

+ 
  

(30)

 

Integrating the above linear differential equation with respect to t yields 

 

( ) ( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( / )
0,

0

( / )
1,

0

1
( / )

,
0 10

, ( ) e e

( )e e

( ) e e
i

t
z z t yt y

B B

t
z z t yt y

B

t J
z z t yt yn

n v
i n

Q z t zq y dy

q y dy

q y z dy

μ λλ μ

μ λλ μ

μ λλ μ

λ

μ

γ

+ −− + −

+ −− + −

− ∞
+ −− + −

= =

=

−

+







  

(31)

 

We use the Bessel function identity, if  and / ,α λμ β λ μ= 2 =  then 

 ( ) ( )exp n
n

n

z t z I t
z
μ λ β α

∞

=−∞

 + = 
      

where In(t) is the modified Bessel function of the first kind. 
Comparing the coefficients of zn in (31), we get 

 

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

, 0,
0

1,
0

1

,
0 10

( ) ( ) e

( ) e

( ) e
i

t
t y n

n B B n

t
t y n

B n

t J
t y n r

r v n r
i r

q t zq y I t y dy

q t I t y dy

q y I t y dy

λ μ

λ μ

λ μ

λ β α

μ β α

γ β α

− + −

− + −

− ∞
− + − −

−
= =

= −

− −

+ −







  

(32)

 

Comparing the coefficients of z–n in (31), we get 
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( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

0,
0

1,
0

1

,
0 10

0 ( ) e

( ) e

( ) e
i

t
t y n

B n

t
t y n

B n

t J
t y n r

r V n r
i r

zq y I t y dy

q t I t y dy

q y I t y dy

λ μ

λ μ

λ μ

λ β α

μ β α

γ β α

− + −

− + −

− ∞
− + − −

+
= =

= −

− −

+ −







  

(33)

 

Subtracting (33) from (32), we get 

 

( )( )

( )( ) ( )( )( )

1

, ,
0 10

( ) ( ) e

, 1

i

t J
t y n r

n B r V
i r

n r n r

q t q y

I t y I t y dy n

λ μγ β

α α

− ∞
− + − −

= =

− +

=

× − − − ≥


  

(34)

 

To evaluate 
0, , ,( ), ( ), and ( ),

iv v Bq t q t q t• • • let 
0

*
, ( )vq s• denote the Laplace transform of 

0, ( )vq t•  

 ( )
0 0 0

* * * *
, , 0, 1,

0 0

1( ) ( ) ( ) 1 ( )
n

v n v v B
n n

q s q s q s q s
s s

λ μ
λ γ γ

∞ ∞

•
= =

 = = = + + + + 
   (35)  

Inversion of the above equation yields 

( ) ( )
0, 1,( ) exp exp ( )v Bq t t t q tγ μ γ• = − + −    

Let *
, ( )

ivq s•  denote the Laplace transform of , ( ), 1, 2, ..., 1
ivq t i J• = −  

 

( ) ( )
( ) ( )

0

* * *
, , 0,

0 0

* *
1, 1,

( ) ( ) ( )

1 ( ) ( ) 1 ( )

i i

n i

v n v v
n n

i

B Bi

q s q s q s
s s

q s h s q s
s s

λ γ
λ γ λ γ

γ μ μ
λ γ γ

∞ ∞

•
= =

   = =    + + + +   

= + = +
+ + +

 
  

(36) 

where  
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( ) ( )
( )

i

ih s
s s

γ
λ γ γ

=
+ + +

  

Inversion of the above equation yields 

, 1,( ) ( ) ( ) ( )
iv Bq t h t h t q tμ• = +    

where  

( )
( )

1

( ) e e
1 !

i
ti t th t

i
λ γγγ

−
− +− 

=  − 
    

and q1,B(t) has already been found.  

( ) ( )
( )

* * * *
, , 0, ,

0 1

* * * * *
1, 1, 1,

( ) ( ) ( ) ( )

1 ( ) ( ) ( ) ( ) ( )
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 On inversion, we get 
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where 
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Here a0, b0, c0, c1, ..., cJ are constants. 
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4. System performance measures 

4.1. Time dependent mean 

The mean number of beneficiaries in the system at a time t is given by 

1
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Differentiating with respect to t, we get 
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n
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∞

=

= −    (38) 

where qn,B(t) has already been found. 

4.2. Time dependent variance 

The variance of number of beneficiaries at time t is given by 

( )2( ) ( ) ( )V t w t m t= −   

where w(t) be the second moment of number of beneficiaries at time t 
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Differentiating with respect to t, we get 
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(39)
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Integrating (39) with respect to t, we get 
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Substituting (38) and (40) in V(t), we get 
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(41)

 

where , ,( ), ( )
in B n vq t q t have already been found. 

5. The steady state solution 

Let πn, j denote the steady state probability for the system to be in state j with n ben-
eficiaries. Mathematically, 

, ,lim ( )n j n jt
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Using the initial value theorem of the Laplace transforms which states 
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where 
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Taking limit as s → 0 on both sides and using the Tauberian theorem, we obtain 
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From (21),  
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Taking the Laplace transform on both sides of (34), we get 
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In the same way, 
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Remark 1. When J → 0, the steady state probabilities converted into standard 
M/M/1 queue. 

( ) ( )1, 0, 1,2 1 , 1B B B
λ μ λ μπ ρ ρ π π ρ

λμ
−

= = − = = −   

Theorem 1. If ρ < 1, the number of beneficiaries present in the system can be 
decomposed into the sum of two independent random variables: Q = Q1 + Qmav where 
Q1 is the number of beneficiaries present in the standard M/M/1 queue, and Qmav the 
additional system length due to the corresponding J vacations with its probability 
generating function (PGF) is 
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where α1 + α2 = 1 and α1 = λ/(λ + γ). 

Proof. Consider 

( )

( ) ( ) ( ) ( )

1

, , 1,
0 0 0

11 2

1 11

1

1,
0 0

1

i

JJ
n n

n B n v B
n n i

nn nJ

n

n iJ

B
n i

Q z z z

zz z

z

μ γπ π π
λ λ γ

αα αρ ρ
ρ ρ α ρ α

λ γ μ π
λ γ λ γ λ γ

∞ ∞ −

= = =

∞

=

∞ −

= =

   = + =    +   

  −  + + −  −   

     +      + + +     

 



 

 



Single server Markovian multiple variant vacation queues 139

 

( )
( )

( )
( )

( )

1, 1, 1 2
1,

1 1

1,
1

1, 1, 1,1 21 2

1 1 1 1

1,

1
1 1 1

1 1
1

1
1 1 1

J J
B B

BJ

J

B

JJ
B B B

J
B

J

z z z
z z z

z

zz z
z z z

μγ π π α α
π

ρ ρ α ρ αλ λ γ

μ γ π
α λ λ γ

π π πα αρ α α
ρ ρ α ρ α α ρ α

γ π

ρ λ γ

 −   = + + −  − − − −+    

    + −     − +    

   −   −
 = − +     − − − − −       


−

+

1
mav

1

1 ( )
1 1

z Q z
z z

α ρ
α ρ

 −   =       − −  

 

(44)
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It is easy to prove that mav (1) 1Q = and therefore mav ( )Q z   is the PGF of additional 
system length due to the effect of multiple adoptive vacations. 

6. Waiting time distribution 

Let W denote the waiting time in the system of an arbitrary beneficiary and let 
W*(s) be the Laplace–Steiltjes transform (LST) of the distribution of waiting time in 
the system. 

Theorem 2. If ρ > 1, the steady state waiting time W can be decomposed into the 
sum of independent random variables: mav ,qW W W= +  where Wq is the waiting time of 
beneficiaries in the system without adaptive vacation, and Wmav is the additional statio- 
nary waiting time due to the effect of multiple adaptive vacations and has a distribution with 
its Laplace transform 
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Proof. From [14], the relationship between PGF of system size distribution and the 
LST of the waiting time of a beneficiary is 
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Assume s = λ(1 – z), and applying 1 sz
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= −  in (44), we have 
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Expected average waiting time during the vacation period becomes 
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and the expected waiting time is 

( ) ( )mav1
E W E Wρ

ρ
= +

−
  

7. Numerical illustrations 

In this section, we present some numerical illustrations to analyse the effect of the 
parameters of our model. We take J = 15, that is the number of vacations permitted to 
the server take is 15. 
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Fig. 2. Various probabilities against time 

In Figure 2, various probabilities, such as 
0 0 00, 1, 5,( ), ( ), ( ),v v vq t q t q t  and 1, ( )Bq t , are 

shown for the parameters λ = 0.2, μ = 0.3, γ 0.001. Note that the system initially started 
with zero beneficiaries when on the first vacation. We notice that the estimated values 

0 01, 5,( ) and ( )v vq t q t increase gradually and decrease later until they arrive at the stable 
in contrast to the values of 

00, ( )vq t and 1, ( ).Bq t   

 
Fig. 3. Probability for the server to be in a busy state 
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Figure 3 shows the time dependences of , ( )Bq t• for the values of λ equal to 0.014, 
0.02, and 0.05. Here, we take μ = 0.2, and γ = 0.5. From this, we spot that when λ 
increases, , ( )Bq t• also increases. Also, the curves reach stability after time points. 
Among the three values of λ, this happens earlier for the value of 0.05, as hoped. 

 
Fig. 4. Probability for the server to be in the first vacation 

 
Fig. 5. Probability for the server to be in the vacations 
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From Figure 4 we observe that the probability for the server to be in the first vaca-
tion decreases with increasing time. We take λ = 0.2, μ = 0.3. All three curves regarding 
γ  = 0.02, 0.04, 0.08 reach stability after some time, but it happens earlier to the values 
of γ  = 0.02, 0.04. It is also seen that the decrease is high for γ  = 0.08 relatively com-
paring with γ  = 0.02, and 0.04. 

Figure 5 exhibits the time dependences of , ( ),
ivq t•  the probability to the server is 

on ith vacation. Here we take λ = 0.2, μ =0.3 and show three curves for i = 12, 13, and 
14. All three curves behave as concave. 

Figure 6 shows the time dependences of E(W(t)), the mean waiting time of benefi-
ciaries in the system for three different values of γ, namely 0.001, 0.01, and 0.5. Initially, 
the mean waiting time increases as time increases, and later after some time, it reaches 
stability. For γ = 0.5, the server availability in the system is high, thus reducing the 
average waiting time of users.  

 

 
Fig. 6. Expected system size 

Figures 7 and 8 display the dependences of the average waiting time of beneficiaries 
in the system against the service rate μ for different values of the arrival rate λ and the 
number of vacations permitted to the server, respectively. From Figure 7, we realised that 
there is a drastic decrease in the mean waiting time as the service rate increases, as intuitively 
expected. In this example, we take γ  = 0.1 and J = 5. If the number of vacations permitted 
to the server is bigger, then the mean waiting time of beneficiaries in the system is also high, 
as expected, in Fig. 8. In this example, we take γ  = 0.1, and λ = 0.051. 
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Fig. 7. Mean waiting time versus service rate for various values of λ 

 
Fig. 8. Mean waiting time versus service rate for various values of J 

8. Conclusion 

In this paper, we derive a time-dependent solution of a single server Markovian 
queueing system with a variant of multiple vacation policy. By obtaining the transient 
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solution of our model, we extend the work of Banik [3] where single arrival is possible. 
Also, we obtain numerically computable time-dependent solution and steady-state 
solution of Pikkala and Pilla [15] in which the server is not providing service while is 
in the vacations. We study the stochastic decomposition structures of steady-state 
system size distribution and waiting time distributions. The impacts of some variables 
on some crucial measures, like the expected waiting time of beneficiaries depicted 
numerically, shows that our closed-form solution is computable. 
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