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ON THE LAW OF THE ITERATED LOGARITHM 
IN HYBRID MULTIPHASE QUEUEING SYSTEMS 
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The model of a hybrid multiphase queueing system (HMQS) has been developed to measure the 
performance of complex computer networks working under conditions of heavy traffic. Two probability 
limit theorems (laws of the iterated logarithm, LIL) are presented for a queue length of jobs in HMQS.  
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1. Introduction 

Whitby in his book about artificial intelligence [21] states that the human brain 
consists of 100 networks of networks (NoN). One of the examples of NoN is a hybrid 
multiphase queueing system (HMQS). At first, we present the summary of works dedicated 
to a particular case of HMQS and multiphase queueing system (MQS, see Fig. 1). One can 
apply limit theorems for a waiting time of a customer and a queue length of customers to 
get probabilistic characteristics of MQS under various conditions of heavy traffic [2, 3]. The 
most fundamental example (a single-phase case, where the time intervals in between the 
arrivals of customers to MQS are independent identically distributed random variables 
and there is a single device, working independently of the output in heavy traffic) has 
been completely investigated by several authors [2, 8]. Iglehart [5] carefully invest- 
igated a single-device case and obtained laws of the iterated logarithm (LIL) for this 
case. It is surprising to note that the fundamental results of Iglehart on the queueing 
systems, working in heavy traffic are rarely used [4–8]. There are only a few papers on 
the theory of MQS in heavy traffic [10, 12, 13] with, however, no proof of LIL for the 
probabilistic characteristics of MQS in heavy traffic. LIL for a cumulative waiting time 
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of a customer and a waiting time of a customer is proved in another paper [13]. In this 
work, theorems on LIL for other main characteristics of MQS in heavy traffic (cumu- 
lative queue length of customers, the queue length of customers, waiting time of a customer) 
are proved. The main tools for the analysis of MQS in heavy traffic are functional LIL for 
a Wiener process and a renewal process (the proof can be found in [20, 5]). We submit some 
definitions from the theory of metric spaces [1, Chapter 2]. Let C  be a metric space 
consisting of real continuous functions in [0, 1] with a uniform metric  

0 1
( , ) = | ( ) ( ) |, ,sup

t
x y x t y t x y Cρ

≤ ≤
− ∈  

Also, let D be a space of all real-valued right-continuous functions in [0, 1] having 
left limits and endowed with the Skorokhod topology induced by the metric d (under 
which D is complete and separable). Define ( )k δ  as a set of absolutely continuous 

functions x C∈  such that (0) = 0x  and ( )[ ]
1

2 2

0

x t dt δ≤  , where x  is a derivative of x, 

which exists almost everywhere, according to the Lebesque measure. Strassen [20] 
showed that ( )k δ  is a compact set for ( )x k δ∈  and 

1/2| ( ) ( ) | ( )x b x a b aδ− ≤ −  

2. Formulation of the problem 

At first, we define an open queueing network (OQN, see, e.g., [18]). Besides, we 
define OQNl for l = 1, 2, ..., m as a sub-network which is a part of HMQS structure (Fig. 1). 
An arrival stream of customers, let us say 1( ),e t  comes to HMQS, and is spread in the 
sub-network in the first phase OQN1 of HMQS, based on a number, e.g., m1 of working 

devices, 1

1

( ) .e t
m

 The customer leaves OQN1 after service and enters the second phase 

OQN2, etc., until she arrives at the last phase OQNm, where she leaves the network 
entirely (the basic examples of HMQS and MQS are provided in Fig. 1). 

We investigate an mth phase HMQS (i.e., when a customer is served in the jth phase 
of HMQS, she is routed to the j + 1 phase of MQS, and only when the customer is served 
in the mth phase of HMQS, she leaves the system entirely). Let us denote by tn a time 
of arrival of the nth customer to the first OQN1; ( )

,
j

l nS  denotes the service time of the nth 
customer in the lth node of the jth OQN of HMQS; 1= ,n n nz t t+ −  denotes also ,j lz  a time 
of arrival of the nth customer in the lth node of the jth OQN of HMQS. Let us introduce 

mutually independent renewal processes ( )
, ,

1
( ) = max :

k
j

l j l i
i

x t k S t
=

 ≤ 
 
  (a total number 
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of customers that can be served in the jth node of the lth OQN of HMQS until time t 
(presuming that all the devices are working without time waste), 

,
1

( ) = max :
k

j l
i

e t k z t
=

 ≤ 
 
  (the total number of customers that arrive at the lth OQN of 

HMQS until time moment t). Next, denote by , ( )l j tτ  the total number of customers that 
depart from the jth node of the lth OQN of the HMQS until time t; , ( )l jQ t  a queue length 
of customers of the jth node in the lth OQN of HMQS at the time moment t; , ( )l jv t  

( ),
1

=
j

l j
i

Q t
=
  as a cumulative queue length of customers until the jth node of the  OQN 

of HMQS at the time moment t, l = 1, 2, ..., m,   j = 1, 2, ..., kj, and t > 0. Suppose that the 
queue length of customers in each node of each OQN in HMQS is unlimited, the service 
discipline of customers is “first come, first served” (FCFS). All random variables are defined 
in one common probability space (S, F, P). Consider interarrival times at HMQS ( )nz  and 
service times ( )

,( )j
l nS  in each node of OQN in HMQS for l = 1, 2, ..., m,   j = 1, 2, ..., kj as 

mutually independent identically distributed random variables. 
Let us define 

 ( ) ( )1 1( ) 2 ( ) 3
, ,1 0 1 , 0 , ,0 , ,1 ,1ˆ= , = , = , = 0, = ( ) > 0j j j

l j l l j l j l l j l lES Ez DS ESβ β α β β α σ
− − −−   

 2 3 2 2 2 2 2 2
0 1 1 , ,0 , , , , 1ˆ ˆ ˆ ˆ ˆ= ( ) > 0, = , =l j l l j l j l j l jDz Ezσ σ σ σ σ σ σ−

−+ +  

( ) ( ) ( ), , 1, 2, ...,ˆ , 1, 2, ..., , , 0l j l j jj kx t e t x t l m t== − = ≥   

Assume the following condition to be fulfilled ,0 ,1 ,> > ... > > 0,l l l jβ β β  then  

 , , 1 ,0> > ... > > 0, where = 1, 2, ..., , =1, 2, ...,l j l j l jl m j kα α α−  (1) 

One of the main results of the paper is a theorem on LIL for the cumulative length 
of customers in HMQS under conditions of heavy traffic. 

Theorem 1. If conditions (1) are fulfilled, then  

, , , ,

, ,

( ) ( )
= 1 = 1 and lim = 1 = 1lim ( ) ( )

l j l j l j l j

tn l j l j

v t t v t t
P P

a t a t
α α

σ σ→∞→∞

   − −
−      

    
 

for l 1, 2, ..., m, j = 1, 2, ..., kj and ( ) = 2 ln , > 0.a t t t t   
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Proof. First of all, denote  

 

, , , , , , , ,
=1 =1 =1

, , , , , , ,
0

= 1 , = 1 , ( ) = ( ) | |)

ˆ ˆ ˆ( ) = ( ( ) ( )), ( ) = ( ) , ( ) = ( ) ( )sup

1, 2, ..., , 1, 2, ..., , 0

k k kj j j
t t t

l j l i l j l i l j l j l i l i
i i i

l j l j l j l j l j l j l l jjs t

j

p p p p w t x t p p

t x s s x t x t p x t e t x t

l m j k t

γγ τ
≤ ≤

 
 − − − 
 

− −

= = ≥

  
 

(2)

 

Note that  

 
,

, , , , , ,
=1 =1 =1,

, ,

( )
ˆ ( ) = ( ) ( ) = ( ) 1 = ( ) 1

( )

( ) , = 1, 2, ..., , = 1, 2, ..., , 0

k k kj j j
l i t

l j l j l i l j l j l i
i i il j

t
l j l j j

t
t t t t t p

t

t p l m j k t

τ
τ τ τ τ τ

τ

τ

   
   − − −     

= ≥

    

(3)

 

Applying the results of the paper [14], we obtain that  

 , , , ,ˆ ˆ| ( ) ( ) | ( ) ( ), = 1, 2, ..., , = 1, 2, ..., , 0l j l j l j l j jt x t w t t l m j k tτ γ− ≤ + ≥  (4) 

In Minkevičius [12] relations  

 , , 1 ,ˆ ˆ( ) = ( ) ( )l j l j l jQ t t tτ τ− −  (5) 
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Now, we present another estimate of inequality (4)  
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From (8) we derive 
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Since for any l  ( = 1, 2, ..., , = 1, 2, ..., )jl m j k   
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we find from (5) the following estimate 
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By Corollary 2.1 in [9] for any fixed j and ,{ , 1},n
l jl x n ≥  there is a relatively compact 

set in ( , ),D  and the set of its limit points coincides with ,( ).l jk σ  Then, in view of 

inequality (8), the family ,{ ( ), 3}n
l jv t n ≥  is also a relatively compact set, and the set of 

its limit points coincides with ,( ).l jk σ  
Hence, we prove that  
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The proof is complete.  
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The theorem on LIL for the queue length of customers in HMQS is proved similarly 
as Theorem 1. 

Theorem 2. If conditions (1) are fulfilled, then  
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Proof. It follows from (7) that  
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Define a family of random functions as 
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Further proof of Theorem 2 is analogous to that of Theorem 1. The proof is com- 
plete. A graphical illustration is provided for hybrid MQS (on the left hand side) and 
generic MQS. 

Remark 1. The results of [5] in a single-device case follow from Theorem 2. As 
the results in the paper of Sakalauskas, Minkeviius [19] on the open queueing network. 

Remark 2. In this work, a recursive proof method is used, which was previously 
used in the study of multiphase queueing systems (see [16]) and open queueing 
networks (see [17]). 

Remark 3. The right side of Fig. 1 shows a diagram of the multiphase queueing 
system (it has the k phase) and the left side of Fig. 1 shows a diagram of the hybrid 
multiphase system (instead of phases there is an open queueing network, the common 
system also has a k phase).  
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Fig. 1. Hybrid multiphase queueing system (left), multiphase queueing system (right) 

3. Concluding remarks 

The theorems of this work are proved for a class of HMQS in heavy traffic with 
reference to the principle first come, first served, endless waiting time of a customer in 
each phase of the queue, when times among customers arriving to HMQS are inde- 
pendent identically distributed random variables. However, similar limit theorems can 
be applied to a wider class of HMQS in heavy traffic: as the arrival and service of custo- 
mers in a queue are by group, and times between the customers arriving to HMQS are 
independent and weakly dependent random variables, etc. 
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