
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 
No. 1 2020 
DOI: 10.37190/ord200104 

APPLICATION OF FUZZY PROGRAMMING TECHNIQUES 
TO SOLVE SOLID TRANSPORTATION PROBLEM 

 WITH ADDITIONAL CONSTRAINTS 

SHARMISTHA HALDER (JANA)1, BISWAPATI JANA2* 

1Department of Mathematics, Midnapore College (Autonomous), Midnapore, West Bengal-721101, India 
2Department of Computer Science, Vidyasagar University, Midnapore, West Bengal-721102, India 

An innovative, real-life solid transportation problem is explained in a non-linear form. As in real life, 
the total transportation cost depends on the procurement process or type of the items and the distance of 
transportation. Besides, an impurity constraint is considered here. The proposed model is formed with 
fuzzy imprecise nature. Such an interesting model is optimised through two different fuzzy programming 
techniques and fractional programming methods, using LINGO-14.0 tools followed by the generalized 
gradient method. Finally, the model is discussed concerning these two different methods. 
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1. Introduction 

Hitchcock [12] in 1941 first developed the transportation problem, which is a sub-
class of linear programming where the constraints are equality or inequality. In the clas-
sical form, the problem minimises the total cost of transporting a product which is avail-
able at some sources and required in a various destination. Haley [31] in 1962 first 
developed the concept of STP/3D-transportation problem. The STP is the process of 
distributing certain products from its manufacturing points (sources) to the different de-
mand points (destinations), using different conveyances and keeping in mind the factor 
of different transportation capacities and transportation costs, fixed charge costs, etc. so 
that total transportation cost is minimum. While dealing with real-life problems, vague-
ness appears in the transportation system due to insufficient information about the sys-
tem or for some unforeseen problems as strikes, natural disasters, festivals, etc. As a re-
sult, consideration of the above uncertain environment in the transportation problem is 
important for practical purposes. 
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In real life, the transportation problem deals with non-linear, non-commensurable, 
multiple and conflicting objective functions. Researchers in the past calculated distance 
function to apply the mathematical model of the non-linear multi-objective transporta-
tion problem (NMOTP). In our proposed case the singular objective function of the 
transportation problem gets to be nonlinear. After Zadeh’s [10] introduction to fuzzy set 
theory in 1965, Zimmermann [11] uses the fuzzy programming technique with some 
added membership functions to solve multi-objective LPP (linear programming prob-
lem). The result was efficient. Bit et al. again use the fuzzy programming technique to 
solve multi-objective transportation problems by selecting an appropriate linear mem-
bership function. In the year 1999, Biswal and Verma [3] apply a fuzzy programming 
technique to evaluate the optimal compromise solution of a non-linear multi-objective 
transportation problem. Jimenez and Verdegay [6] come up with a technique to solve 
a fuzzy solid transportation problem. Discussion about fuzzy programming and additive 
fuzzy programming for multi-objective transportation problems can be found in [1] and [2]. 
Lin and Wen [4] propose the method for solving the fuzzy assignment problem. Intro-
duction to the fuzzy transportation problem with additional restriction is given by Dutta 
and Murthy [5]. Singh and Saxena [8] study the multi-objective time transportation 
problem with additional impurity restriction. Generally, more than one objective func-
tion is considered in a transportation problem. In real scenarios, it is practical to assume 
that the quantity of an item that can be sent on a particular path is bounded by the capacity 
of the path. Also, Appa [13] give us ideas about the different variables that can occur in 
a transportation problem. In this paper, the formulation of a numerical model of the non-
linear transportation problem is shown. In this non-linear STP, one part of the objective 
function is linear with fixed transportation cost and the second part is non-linear with unit 
transportation fuzzy cost is varied with distance from some source to the origin. 

The structure of the paper is as follows. Section 1 is the introduction, and literature 
survey related to the paper is presented in Section 2. Some basic ideas about solid trans-
portation problem are given in Section 3. In Section 4, the model definition and formu-
lation are presented. In Section 5, solution techniques are briefly discussed. A numerical 
problem using real-life data is presented and solved in Section 6. In Section 7, sensitivity 
analysis are addressed. The conclusion and scope of further research are shown in the 
last Section 8. 

2. Literature survey 

The imprecise nature of the mathematical model is the trend of mathematical re-
search of the last few decades. At an earlier age, the imprecise nature transformed into 
a crisp nature through different simple definition cum methods, like fuzzy centroid 
method, possibility necessity method, interval method, etc. But during the last few 
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years, the fuzzy programming method marks a new era in the area of imprecise nature 
of the model. So, the study of the fuzzy programming technique in solid transportation 
problems is becoming much popular in recent years. Liang [21] describes a fuzzy linear 
programming technique in an interactive way. Verma et al. [22] propose a special type 
of non-linear membership function to solve the multi-objective TP and compare the 
obtained result with linear membership function. Li and Lai [23] represent a fuzzy pro-
gramming technique where various objectives are synthetically considered with the mar-
ginal revolution. Kumar [20] suggests a simple method for solving type-2 and type-4 fuzzy 
transportation problem. In 2014, Kumar [18] examines a systematic approach for solv-
ing the mixed intuitionistic fuzzy transportation problem. In 2018, Kumar [20] compares 
his earlier method with the recently obtained by the software-based approach. Recently, 
Anukokila [14] offers a fuzzy goal programming method for solving multi-objective trans-
portation problem, and Kumar [15] very carefully develops a PSK method for solving the 
mixed fuzzy solid transportation problem. Ramakrishna [25] describes a variation of 
Vogel’s approximation method for finding an initial feasible solution to the TP. Shafaat 
and Goyal [26] introduce a procedure for ensuring an improved solution for a problem 
with a single degenerated basic feasible solution. Arsham and Khan [27] give an algo-
rithm that is faster than simplex, more general than a stepping-stone, and simpler than 
both in solving the general transportation problems. Gass [28] describes various aspects 
of TP methodologies and computational results. 

3. Preliminaries. Solid (3D) transportation problem 

The solid transportation problem (STP) is a generalization of the well-known trans-
portation problem (TP) in which three-dimensional properties are taken into account in 
the objective and constraint set instead of source and destination. The STP was first 
stated by Shell [24]. In many industrial problems, a homogeneous product is delivered 
from an origin to a destination, using different modes of transport called conveyances, 
such as trucks, cargo flights, goods trains, ships, etc. These conveyances are taken as 
the third dimension. A solid transportation problem can be converted to a classical trans-
portation problem by considering only a single type of conveyance (Fig. 1). 

We consider m origins (or sources) Oi (i = 1, 2, ..., m), n destinations (i.e., demands) 
Dj ( j = 1, 2, ..., n), and K conveyances Ek (k = 1, 2, ..., K). K conveyances, i.e., the 
different modes of transport, may be trucks, cargo flights, goods trains, ships, etc. Let 
ai be the amount of a homogeneous product available at ith origin, bj the demand at jth 
destination and ek represent the amount of product which can be transported by the kth 
conveyance. The Cijk is the unit transportation cost from ith source to jth destination, 
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using the kth conveyance. The variable xijk represents the unknown quantity to be trans-
ported from origin Oi to destination Dj employing kth conveyance. The mathematical 
form of STP is 

 
1 1 1

min
m n k

ijk ijk
i j k

Z c x
= = =

=   (1) 
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i j

x c k k
= =
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 0, , ,ijkx i j k≥ ∀   (5) 

 
Fig. 1. Illustration of STP 

4. Model definition and formulation 

4.1. Notations 

Subscripts 

i – index for source/origin for all i = 1, 2, ..., m 
j – index for destination for all  j = 1, 2, ..., n 
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Decision variables 

wij – units transported from ith origin to  jth destination 
(xi, yi) – position of the ith origin 
z1 – total transportation cost from ith origin to  jth destination 

Parameters 

hij – production cost per unit delivered from ith origin to jth destination 
cij – transportation cost per unit delivered from warehouses i to markets  j 
ai – total available supply for each source (or origin) 
ai – total available supply for each source (or origin) 
bj – total demand of each destination j (pj, qj) position of the  jth destination 
dij – distance of per unit delivered from ith warehouses to  jth markets 

4.2. Model formulation 

Let us consider a transportation problem with m origins Oi (i = 1, 2, ..., m) and n desti-
nations Dj C j = 1, 2, ..., n) in which the position (xi, yi) of origins is to be decided con-
cerning the position of destination ( pj, qj) of the units of transportation wij from ith origin 
to jth destination. Also to be decided: the first part of the objective function is the cost 
associated with the amount to be transported, and the second part is associated with the 
distance from the origin to destinations. Hence, the objective function of the non-linear 
solid transportation problem is as follows: 

 1
1 1 1 1

min
m n m n

ij ij ij ij ij
i j i j

z h w c d y
= = = =

  = + 
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     (6) 
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For the ith origin Oi to the total amount shipment 
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j

w
=
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ity ai. Hence, we must have the availability constraint 



 S. HALDER (JANA), B. JANA 72

 
1

1, 2, .., .,
n

ij i
j

w a i m
=

≤ =   (7) 

In other words, the total incoming shipment at  jth destination is
1

,
m

ij
i

w
=
 which 

should satisfy its requirement or demand. That is, we must support the demand con-
straint 

 
1

1, 2, .., .,
m

ij j
i

w b j n
=

≥ =   (8) 

In the transportation system, if an item damaged/broke during the time of transpor-
tation, then the demand point cannot receive 100% perfect item as supplied from the 
sources. For such type of item, the demand for perfect (undamaged/unbreakable) item 
by the demand point yields an impurity constraint with the help of impurity factor  fi as 
in the form 

 
1

, 1, 2, ...,
m

i ij j
i

f w g j n
=

≤ =   (9) 

Non-negativity constraints on decision variables: wij ≥ 0, ∀i,  j. 

5. Solution procedure 

For a solid transportation problem, the objective is to find the decision variables which 
minimise the total cost of transportation. For an STP, every solution is a feasible solution, 
since it needs to satisfy the feasibility condition (cf. equations (1)–(5), Section 3). If the 
number of non-zero solutions is less than (m + n + k – 2), then such a solution is known 
as a degenerate solution which yields multiple basic feasible solutions. Among the basic 
feasible solutions, the optimum solution is to find out one based on the objective func-
tion (minimisation of total transportation cost). 

5.1. Method 1 proposed by Kanti Swarap 

Step 1. The transportation costs of many real-world applications are not determin-
istic numbers. Consider a manufacturing company which provides different products 
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for different warehouses and transports to different destinations. In that case, the com-
pany usually restricts the transported cost 0

ijc from ith origin to jth destinations, and the 
transported costs cij vary from the distance where the product or goods can be shipped 
from ith warehouses to jth market. Here, we assume a minimum cost for the amount of 
product shipped from ith origin to jth destination. 

In this case, the fuzzy costs ( , )ij ij ijc α β= are subnormal fuzzy numbers having 
strictly increasing linear membership functions, where αij is the least cost associated 
with the amount to be shipped from ith origin to jth destination and αij is the least cost 
associated with the amount to be shipped from ith origin to jth destination with the 
highest quality of the product. Without loss of generality, it is assumed that αij > βij > 0. 
The membership function of ijc  (Fig. 2) as the strictly increasing linear function is  

 

if

( ) if

0 otherwise

ij ij ij

ij ij
ij ij ij ij ij ij

ij ij

q c
c

c q c

β
α

μ α β
β α

 ≥
 −= ≤ ≤ −


  (10) 

 

Fig. 2. Membership function of ijc  

The condition wij > 0 is added to (10) because there is no real expense if wij = 0 in any 
feasible solution w = {wij, 1 ≤ i ≤ m, 1 ≤ j ≤ n} of (6). We use the notation <αij, βij> to 
denote .ijc Matrix ijc is shown as follows: [ ]ijc  = [<αij, βij>]m×n. The quality matrix [qij] is 
defined by [qij] = [qij]m×n, where [qij] represents the highest quality of product associated with 
the amount transported from ith warehouses to jth market and 0 < [qij] ≤ 1. 
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Step 2. Let Tc  denote the total cost, and the numbers a and b are defined as the 
lower and upper bounds of the total cost, respectively. We define the membership func-
tion of Tc as the linear monotonically decreasing function in (8), and use the notation  
<a, b> to denote fuzzy interval .Tc  Numbers a and b are constants and subjectively 
chosen by the manager. We may take a as the minimum cost of the transportation prob-
lem with αij’s as costs and b is the maximum cost of the transportation problem with 
βij’s as costs, the demand and supply values in both being same as those of problem (6). 
The membership function of the total cost (Fig. 3) is 

 1
1

 

1 if

( ) ( ) if

0 if

 T

T
T T T T

T

c a
b z b cc z a c b
b a b a

c b

μ μ

≤
 − −= = = ≤ ≤ − −

≥

  (11) 

 
Fig. 3. Membership function of Tc  

Step 3. We choose Bellman–Zadeh’s criterion [9] which maximises the minimum 
of the membership functions corresponding to that solution, i.e., 

 max min( , ( ( )){ }ij T Tcμ μ   (12) 

where wij is an element of a feasible solution w = {wij ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} of (6). Then, 
we can represent the problem as follows: 

 max min ( , ( ( )); 0{ }ij T T ijc wμ μ >   (13) 

subject to 
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Non-negativity constraints on decision variables: wij ≥ 0, ∀i, j 

Step 4. We further restrict the transportation cost to be less than or equal to βij since 
any expense exceeding βij is useless. By membership function of (10) and (11), we can 
further represent (14) as the following equivalent model. 

Max λ subject to 
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  (15) 

where ijcλ denotes the α-cut of .ijc  In (15), since wij, ijcλ
 and λ are all decision variables, it 

can be treated as a mixed integer nonlinear programming model. We first define the set  
E = (i, j) as the set of all pairs (i, j) where wij is an element of the feasible solution w = {wij;  
1 ≤ i ≤ m, 1 ≤ j ≤ n} of (6) and confine our discussion based on E, then we can simplify 
(15) as follows: 

Maxλ subject to 

 ( ,, )ij ij
ij

ij ij

c
q i j E

λ α
λ

β α
−

≤ ∈
−

   (16) 
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Maxλ 

 for ( , )ij ij ij
ij

ij ij

h
q i j E

β α
λ

β α
− −

≤ ∈
−

  (19) 

 
0

( , ) ( , ) ( )i j ij ij i j ij ij ij ijb c w h d y
b a

Σ Σ β
λ

− − −
≤

−
  (20) 

 , , 0 for ( , )ij ijh y i j Eλ ≥ ∈   (21) 

Theorem 1. Let λ w be the optimal value of (18)–(21). Suppose 
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Proof. The problem (18)–(21) can be written into a linear programming model as 

Maxλ subject to 

 ( ) for ( , )ij ij
ij ij ij
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h i j E
q

β α
λ β α
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 0
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 , 0 for ( , )ijh i j Eλ ≥ ∈   (25) 

We obtain the dual problem of the above problem as 
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( , ) ( , ) ( , ) 1min ( ) { }i j ij ij i i j ij ij i j ij ij ij nv b c w h y vΣ β α Σ Σ β +− + − −   (26) 
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Let s1, s2, …, sn+1 be the slack variables of (23) and (24), respectively. Similarly, let 
u1, u2, ..., un+1 be the surplus variable of (27) and (28), respectively. Since 

0
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>
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By (20), we have α min(i,j)(qij) and ∀hij > 0. As based on the complementary slack-
ness theorem, we obtain u1 = u2 = … = un = 0. Hence, vi − vn+1 = 0 for i = 1, 2, ..., n and 
v1 = v2 = ... = vn = vn+1. If v1 = v2 = ... = vn = vn+1 = 0, there is a contradiction to (28). 
Therefore, we have v1 = v2 = ... = vn = vn+1 > 0, and, again, by the complementary slack-
ness theorem, we find s1 = s2 =... = sn+1 = 0, the proof is then completed. In most of the 
real-life problems, the upper bound condition of the total cost cT, i.e, 

0
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( )
1 ( )

i j ij ij i j ij ij ij ij

i j ij

c w h d y
b
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can be just satisfied. Therefore, we concentrate our discussion on this situation. 
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Theorem 2. Let λw be the optimal value of (18)–(21), and 
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Proof. By Theorem 1, assuming the solution to be non-degenerate, we have 
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Hence, after transformations we get 
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It should be noted that this method applies to problems where the objective function  f 
is any general function having continuous partial derivatives. Here it will be better to 
start with a basic feasible solution instead of any feasible solution to the problem, be-
cause of its optimization criteria. This method leads to less computational work. Also 
for this method, if the objective function is convex or quasi-convex, then the local opti-
mum is global. 
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5.2. Method 2. Fractional programming model 

By Theorem 2 and (15), (29) can be restated as 
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This is a linear fractional programming problem and its optimal solution may be 
obtained by the Kanti Swarup algorithm [7]. Now, hij for (i, j) ∈ E can be obtained from 

  ij ij ij
w

ij

hβ α
λ

γ
− −

=   

Then, the fuzzy costs corresponding to the maximal value of λ are given by cλij = βij − hij. 

6. Numerical illustration 

6.1. Example 

Consider the non-linear transportation problem with 2 origins, 2 destination as fol-
lows: 

• Transported cost 0
ijc  

0 13 16
10 12ijc
 

=  
   
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• Shipped transportation cost cij 

5, 13 6, 11
4, 13 2, 13ijc

< > < > 
=  < > < > 

  

• Quality product matrix qij 

0.8 0.5
[ ]

0.9 0.9ijq
 

=  
 

  

and 

10 10
[ ]

10 10ijγ  
=  
 

  

and the corresponding maximum cost of the transportation problem with costs ijβ ′  as 
b = 190 (Tables 1–3).  

Table 1. Input data 

Supply Demand Impurity Maximum impurity 
received Known location 

a1 = 6 
a2 = 2 

b1 = 4 
b2 = 4 

f1 = 1 
f2 = 2 

g1 = 5 
g2 = 8 

(4, 8) 
(7, 9) 

Table 2. For lower bound 

Distance Unknown location 
d11 = 1.33 d12 = 1.9 x1 = 5.38 x2 = 4.0 
d21 = 0 d22 = 3.0 y1 = 8.0 y2 = 9.1 

Table 3. For upper bound 

Distance Unknown location 
d11 = 3.16 d12 = 0 x1 = 7.2 x2 = 5.3 
d21 = 1.65 d22 = 1.63 y1 = 9.0 y2 = 9.0 

 
Hence, from equations (30), (31), the problem reduces to 

11 12 21 22 11 12 22

11 12 22

190 13 15 10 12 6.5 11.4 6max
60 13 19 30

w w w w y y y
y y y

− − − − − − −=
+ + +

  

subject to 
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1 11 2 21 1

2 12 2 22 2

w w a
w w a
w w b
w w b
f w f w g
f w f w g

+ ≤
+ ≤
+ ≥
+ ≥

+ ≤
+ ≤

   (32) 

For (i, j) ∈ E, we have 

ij ij ij
w

ij

h
q

β α
λ

− −
=   

so that (Table 4) 

ij ij ij ij wh qβ α λ= − −  

Table 4. Value of hij and fuzzy cost corresponding to λ 

Value of hij Fuzzy cost corresponding λ 

h11 = 3.1 h12 = 0.1 0.49
11c = 9.9 0.49

12c = 10.9 

h21 = 4.1 h22 = 6.1 0.49
21c = 8.9 0.49

22c = 6.9 

 
The optimal solution of problem (32) is obtained using the Kanti Swarup method 

(Tables 5, 6). 

Table 5. Solution by the Kanti Swarup method 

Decision variable wij maxλ z1 
w11 = 3.23 w12 = 2.76 0.49 91.46 w21 = 0.76 w22 = 1.23 

Table 6. Solution by the fractional programming method 

Decision variable wij maxλ z1 
w11 = 3.99 w12 = 2.01 0.49 87.41 w21 = 0.02 w22 = 1.99 

 
From the present model, it is seen that distances from origins to destinations play 

an important role in the transportation system. For simplicity, here we settled a (2×2) 
transportation problem, where the results reveal the following decisions: 
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• The solution (minZ = 91.46) by the Kanti Swarup method is inferior to the solu-
tions (minZ = 87.41) obtained by the fractional programming methods. But the alloca-
tions obtained by method 1 is more creditable (the allocation W21 = 0.02 by fractional 
programming method is near about zero). 

• Solutions obtained by this method occurred for more time complexity as well as 
space complexity, since, they are obtained in three steps, whereas for the fractional pro-
gramming method, we obtain the results in a single step. So, the fractional programming 
method is a single-step method and the Kanti Swarup method is a multi-step method. 

7. Sensitivity analysis and its discussion 

For sensitivity, we consider the post-optimality condition that the transportation 
system does not affect the distances from sources to destinations. The corresponding 
results given below are obtained from the two methods discussed above (Tables 7, 8). 

Table 7. Particular results by the Kanti Swarup method 

Decision variable wij maxλ z1 
w11 = 2.03 w12 = 2.00 0.49 71.03 w21 = 0.86 w22 = 1.30 

Table 8. Particular results obtained 
by the fractional programming method 

Decision variable wij maxλ z1 
w11 = 3.0 w12 = 3.0 0.49 60.00 w21 = 1.0 w22 = 1.0 

 
From the results obtained out of particular cases, that is by ignoring the measurement 

of distances of transportation, it is revealed that more criteria (here, distance) yield more 
total cost. So, in reality, if we ignore such matter, the results will be more profitable. 

8. Conclusions 

Transportation problem arises in many sectors. Industry, public society are shaped 
in this form. Here, for the first time, a non-linear transportation problem is proposed, 
where one part of the objective function is linear with usual transportation cost, and the 
second part is non-linear, due to the unit transportation cost which varies with distance 
from the source to the origin. We model a fuzzy transportation problem to overcome the 
uncertain nature of the real world. The model is defuzzified and optimised using the 
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Kanti Swarup method and fractional programming methods. Here, one impurity con-
straint is considered to maintain the non-defective of the times. The method discussed 
will guide decision-makers in the field of logistics which are related to practical prob-
lems of life and also provide optimal solutions in a very simple and effective way. The 
technique to formulate an STP as a minimisation problem can be used to other types of 
transportation models or problems. 

As the proposed model is one of the realistic models, so it can be formulated with 
other different types of uncertainty, like rough, fuzzy-rough, stochastic, fuzzy stochas-
tic, etc. The problem also can be exchanged to a profit maximisation model instead of 
minimisation of the total cost. The problem can be solved with other types of soft com-
puting methods, like a genetic algorithm, particle swarm optimisation, etc. 
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