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SOLUTIONS FOR NETWORK GAMES  
AND SYMMETRIC GROUP REPRESENTATIONS 

We present the relationship between network games and representation theory of the group of 
permutations of the set of players (nodes), and also offer a different perspective to study solutions for 
this kind of problems. We then provide several applications of this approach to the cases with three and 
four players. 
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1. Introduction 

The organisation of individual agents into networks plays an important role in the 
determination of the outcome of many social and economic interactions. For instance, 
friendships and social relationships, communicating information about job openings, 
business partnerships, international trade agreements and political alliances, etc. What 
is common to these situations is that the way in which players are connected to each 
other is important in determining the total productivity or value generated by the group. 

Myerson [8] makes a contribution in augmenting a cooperative game by a network 
structure, specifying which groups of players can communicate and achieve their worth. 
The feasible groups are the ones whose members can communicate via the given 
network. There exists an extension of the Shapley value [9] to this kind of cooperative 
games, providing a simple characterisation of it. This allocation rule is called the 
Myerson value in the subsequent literature (see, e.g., [1]). 

In a more general context, Jackson and Wolinsky [7] introduce a class of games  
– network games – where the value generated by a group of players depends directly on 
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the network structure. They extend the Myerson value to network games and study the 
stability and efficiency of social and economic networks when self-interested individuals 
can form or sever links. More recently, Jackson [6] takes an axiomatic point of view for 
solving network games and presents a family of allocation rules that incorporate 
information about alternative network structures when allocating value. 

In this article, we study the solutions for network games that satisfy the elementary 
properties of linearity and symmetry, for the cases of three and four players. The paper 
presents the innovative use of basic representation theory of the group of permutations 
of the set of players (symmetric group) and provides a different perspective from the 
more traditional ones. 

Roughly speaking, representation theory is a general tool for studying abstract 
algebraic structures by representing their elements as linear transformations of vector 
spaces. It makes sense to use it since every permutation may be thought of as a linear 
map2 and it presents the information in a more clear and concise way. Some examples 
of the use of representation techniques in the game theory framework are Hernández- 
-Lamoneda et. al. [4] for games in characteristic function form, and Sánchez-Pérez [5] 
for games in partition function form. By contrast, for a survey of the ways in which the 
representation theory of the symmetric group is used in voting theory, see Crisman and 
Orrison [2]. 

Our primary goal is to show how certain representation theory tools can be used to 
make sense of foundational ideas in network games, and how using these tools can, in 
turn, help us to obtain meaningful information concerning linear symmetric solutions in 
network games. In short, what we do is to compute direct sum decomposition of the 
network games space (via the space of value functions) and the space of payoffs into 
elementary pieces. According to this decomposition, any linear symmetric solution, 
when restricted to any such elementary piece, is either zero or multiplication by a single 
scalar. Therefore, all linear symmetric solutions may be written as a sum of trivial maps. 

With a global description of all linear and symmetric solutions, it is easy to understand 
the restrictions imposed by other conditions (e.g., the efficiency axiom). We then use 
such decomposition to provide, in a very economical way, a characterisation for the 
class of linear symmetric solutions and the class of all linear, symmetric, and efficient 
solutions. 

The paper is organised as follows. We first recall the main basic features of network 
games and their solutions in the next section. A decomposition for the space of value 
functions with three players is introduced in Section 3. In the same section, we show an 
application of this decomposition by giving characterizations of linear symmetric 
solutions. In Section 4, we discuss a decomposition for a case with four players, and 
Section 5 concludes the paper. Long proofs are relegated to Appendix. 

 _________________________  

2The precise statement will be provided in Sec. 3. 
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To finish this introduction, we give a comment on the methods employed in the 
article. Although it is true that the characterisation results could be proved without any 
explicit remark on the basic representation theory of the symmetric group, we believe 
that this algebraic tool sheds new light on the structure of the space of network games 
and their solutions. A part of the purpose of the present paper is to share this viewpoint 
with the reader. 

To make the paper as self-reliant as possible, we include an Appendix with some 
facts we need regarding basic representation theory. 

2. Framework and definitions 

Let N = {1, 2, …, n} be a fixed non-empty finite set, and let the members of N be 
interpreted as players (or nodes) who are connected in some network relationship. 
A network is a list of pairs of players that are linked to each other and modeled as a non- 
-directed graph3. 

Definition 1. A network g is a set of unordered pairs of players {i,  j}, where {i,  j}  g 
indicates that i and j are linked under the network g. 

When there is no place for confusion and for simplicity, we will write just I = ij to 
to represent the link {i,  j}. In this way, ij  g indicates that i and j are linked under the 
network g. More formally, let gN be the set of all subsets of N of size 2. In other words, 
gN will denote the complete network where all the players are linked with each other. 

The set of all possible networks or graphs on N will be denoted by G(N): 

   NG N g g g    

The network obtained by adding link ij to an existing network g is denoted g + ij and 
the network obtained by deleting link ij from an existing network g is denoted g – ij. 

For g  G(N), let N(g) be the set of players who have at least one link in g. That is, 

N(g) = {i$j s.t. ij  g}. Let n(g) = N(g) be the number of players involved in g. 

Let Li(g) be the set of links that player i is involved in, so that Li(g) = {ij j  s.t. ij  g}, 

and let ( ) ( ) .i ig L g   

 _________________________  

3That is, it is not possible for one individual to link to another without having the second individual 
also linked to the first. 
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Given any non-empty subset (coalition) S  N, let gS be the complete network 
among the players in S, and let  

{ and , }Sg ij ij g i j S     

Thus Sg is the network found deleting all links except those that are between 

players in S. 

Remark 1. Notice the distinction between the notation gS which is the complete 
network among players in S, and Sg which is the network found by starting with 

some g and then eliminating links involving players outside of S.  

Definition 2. A path in a network g  G(N) between players i and j is a sequence of 
players i1, …, iK such that ikik + 1  g for each k  {1, …, K – 1}, with i1 = i and iK = j. 

From the path relationships in a network, it can be naturally partitioned into different 
connected subgraphs that are commonly referred to as components. 

Definition 3. A component of a network g is a non-empty subnetwork g  g, such that 
a) if i,  j  N(g) where j ≠ i, then there exists a path in g between i and j, 
b) if i  N(g) and ij  g, then ij  g. 

In this way, the components of a network are the distinct connected subgraphs of 
a network. The set of components of g will be denoted by C(g).  

Notice that g = g   C(g)g and under this definition of a component, a completely 

isolated player who has no links is not considered a component. Also for a given number 
of players n, we need to define a set An which is used in the sequel. We will say that the 
pair (k, l) belongs to An if k is a conceivable number of links and there exist a network g 
and a player i such that g has k links and i is involved in l links. Formally: 

Definition 4. Let An be the set defined by 

( , ) 1  and there exists ( )
2

and  s.t.  and ( )

n

i

n
A k l k g G N

i N g k g l

       
  


   




  

For instance, if n = 5, it turns out that (3, 2)  A5 since there exists a network with 
3 links and a player involved in 2 (out of 3) links. 
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Example 1. For the cases n = 3 and n = 4, we have A3 

 A3 = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 2)}  

and 

A4 = {(1, 0), (1, 1), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2) 

 (3, 3), (4, 1), (4, 2), (4, 3), (5, 2), (5, 3), (6, 3)} 

It is interesting to notice that the total productivity4 of a graph and this notion is 
captured by a value function. 

Definition 5. A value function is a mapping 

 ( )G N      

such that (Æ) = 0. The set of all possible value functions is denoted , i.e., 

 ( )G N           

The number (g) specifies the total value generated by a given network structure g. 
The calculation of value may involve both costs and benefits, and is a richer object than 
a characteristic function of a cooperative game5, as it allows the value that accrues to 
depend on the network structure and not only on the coalition of players involved. 

Given 1, 2   and c  , we define the sum 1 + 2 and the product 1, in  

in the usual form, i.e., 

 1 2 1 2 1 1( )( ) ( ) ( ) and ( )( ) ( )g g g g g            

respectively. It is easy to verify that  is a vector space (over ) with these operations. 

 _________________________  

4By productivity we mean the utility to the society of players involved. For instance, a buyer’s ex-
pected utility from trade may depend on how many sellers that buyer is negotiating with, on how many 
other buyers they are connected to, etc. Similarly, a network where players have very few acquaintances 
with whom they share information will result in different employment patterns from the one where players 
have many such acquaintances. 

5Formally, a cooperative game in characteristic function form is defined as a function v:2N   with 

the property that v(Æ) = 0. The elements of 2N are coalitions and if S  2N then v(S) is the worth of coali-

tion S under the cooperative game v. 
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For subsequent analysis we will use the notation G(n)(N) and  (n) to emphasise over 
a particular number n of players considered in the set G(N) and on the space , 
respectively. 

An interesting sub-class of value functions are those where the value of a given 
component of a network does not depend on the structure of other components. This 
precludes externalities across (but not within) components of a network. 

Definition 6. A value function  is component additive if for any g  G(N): 

( )

) ( )
g C g

g w g


    

Definition 7. A network game is a pair (N, ), where N is the set of players and  is 
a value function. 

In order to know how the total productivity of a network (in a network game) is 
allocated among the individual nodes, we need to define the notion of a solution6. 

Definition 8. A solution is a function 

 ( ) nG N       

Where  i(g, ) is interpreted as the utility payoff which player i should expect from the 
network game (N, ) for a fixed network g. 

The previous notion of a solution is the one that we will use for the analysis in this 
article. In the same sense, it is common to find the concept of an allocation rule in the 
literature. 

Definition 9. An allocation rule is a function ( ) nG N     such that 

 ( , ( ) and i
i N

g g g   


      (1) 

Remark 2. Notice the difference between the concepts of solution and allocation 
rule. While a solution is a more general concept, an allocation rule is a more restrictive 
one: it is a solution that satisfies the condition imposed by (1), which stands for an 
efficiency-type property. 

 _________________________  

6This is analogous to that on the set of cooperative games  (N) = {v: 2N   v(Æ) = 0}. In this 

context,  (N) is a vector space (over ) of dimension 2n – 1 and a solution is a function  :  (N)  n 

where it is interpreted as a rule to divide the common gain among the players of N. 
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Due to the richness of network games, several solutions (allocation rules) have been 
given for these problems. For example, as mentioned in the introduction, the first paper 
that proposes a value concept for network problems is Myerson [8]. It is an allocation 
rule defined in the context of cooperative games with communication structures, that is 
a variation of the Shapley value. The following presentation of Myerson’s value is due 
to Jackson and Wolinsky [7], which it is an easy extension of the main theorem of 
Myerson [8]. Such allocation rule satisfies the following axioms. 

Axiom 1 (component balance (CB)). An allocation rule  satisfies component 
balance if for any component additive  and g  G(N), and g  C(g) 

 
( )

( ,i
i N g

g g  


       

Component balance requires that if a value function is component additive, then the 
value generated by any component is allocated to the players among that component. 

Axiom 2 (equal bargaining power (EBP)). An allocation rule  satisfies equal 
bargaining power7 if for any component additive andgG(N

( , ( , ) ( , ( ,i i j jg g ij g g ij                 

This axiom does not require that players split the marginal value of a link; instead, 
it just requires that they equally benefit or suffer from its addition. 

Theorem 1. There exists a unique allocation rule  that satisfies CB and EBP [7]. 
Moreover, it is given by  

 

 
 

1

! 1 !
( , ) )

!
M
i S i S

S N

S N S
g g g

N
   

 

 
         (2) 

for all g G(N) and any component additive . 
The previous characterization of the Myerson value can be found in Jackson and 

Wolinsky ([7], Theorem 4), where it is defined as the Shapley value of an specific 
cooperative game. This particular game is such that the worth of a coalition is the sum 
over the worth of the subcoalitions which are those which are intraconnected via the 
network. 

 _________________________  

7This was called fairness by Myerson [8]. 
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2.1. The basic axioms 

For the study of solutions of network games using representation theory techniches, 
the reasonable requirements that are necessary to impose are the usual linearity and 
symmetry axioms. These axioms will be a key ingredient in subsequent developments. 
Next, we define them. 

First, the group of permutations of N, Sn = { : N  N is bijective}, acts on G(N) 

(set of networks) as well as on n (space of payoff vectors) in a natural way, i.e.: 

 for g  G(N) and   Sn: 

( ) ={ ( ) ( ) }g i j ij g     

 for x = (x1, x2, …, xn)  n and   Sn: 

1 2 2( , , ..., ) ( , , ..., )n nx x x x x x          

Moreover, the group Sn acts on the space of value functions  in the following way: 
if    and   Sn, then 

1[ ]( ) [ ( )]g g      

Now, the formal restrictions are the ones below. 

Axiom 3 (linearity). The solution  is linear if for every g  G(N), every 1, 2   and 

every c  : 

2 1 2( , ) ( , ) ( , )g c c g g         

Axiom 4 (symmetry). The solution  is said to be symmetric if and only if 

( ( ), ) ( , )g g       

for every   Sn, every g  G(N) and every   . 
The axiom of linearity means that in the sharing of benefits (or costs) stemming 

from two different issues, how much each player obtains does not depend on whether 
they consider the two issues together or one by one. Hence, the agenda does not affect 
the final outcome. Also, the sharing does not depend on the unit used to measure the benefits. 
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In addition, the symmetry axiom means that player’s payoffs do not depend on their 
names and it is only derived from his influence on the value of the networks. The axiom 
requires that if all that has changed is the labels of the players and the value generated 
by networks has changed in an exactly corresponding fashion, then the allocation 
changes only according to the relabeling. 

Remark 3. It is not difficult to show that the Myerson value is a solution that 
satisfies the properties of linearity and symmetry. 

3. Representations 

Precise definitions and some proofs for this section may be found in the Appendix 
at the end of the article. Nevertheless, for the sake of easier reading we repeat here a few 
definitions, sometimes in a less rigorous but more accessible manner. 

The group Sn acts naturally on the space of value functions  via linear trans- 
formations (i.e.,  is a representation of Sn). That is, each permutation   Sn 
corresponds to a linear, invertible transformation, which we still call , of the vector 
space  ; namely 

1[ ]( ) [ ( )]g g      

for every   Sn,     and g  G(N). 
Moreover, this assignment preserves multiplication (i.e., is a group homomorphism) 

in the sense that the linear map corresponding to the product of the two permutations 
12 is the product (or composition) of the maps corresponding to 1 and 2, in that 
order. 

Similarly, the space of payoff vectors n is a representation of Sn: 

1 2 ) )( , , ..., ) ( , , ..., )n nx x x x x x        

Definition 10. Let X1 and X2 be two representations for the group Sn. A linear map 
T: X1  X2 is said to be Sn-equivariant if T(x) = T(x), for every   Sn and every 
x  X1. 

Remark 4. Notice that what we are calling a linear symmetric solution (for network 
games), in the language of representation theory means a linear map that is Sn-equivariant. 
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3.1. Decomposition of  (3)  

Definition 11. Let Y be a subspace of a vector space X. 
 Y is invariant (for the action of Sn) if for every y  Y and every   Sn, we have 

y Y    

 Y is irreducible if Y itself has no invariant subspaces other than {0} and Y itself. 
We begin with the decomposition of n into irreducible representations, which is 

easier, and then proceed to do the same thing for  ; that is, we wish to write n as 
a direct sum of subspaces, each invariant for all permutations in Sn in such way that the 
summands cannot be further decomposed (i.e., they are irreducible). 

For this, let 

ꞏ

1

{( , , ..., ) } and V 0
n

n n
n n n i

i

U t t t t U x x



 
       

 
     

The spaces Un and Vn are usually called the ‘trivial’ and ‘standard’ representations, 
respectively. Notice that Un is a trivial subspace in the sense that every permutation acts 
as the identity transformation. 

Every permutation fixes every element of Un, so, in particular, it is an invariant 
subspace of n. Being 1-dimensional, it is automatically irreducible. Its orthogonal 
complement Vn consists of all vectors such that the sum of their coordinates is zero. 
Clearly, if we permute the coordinates of any such vector, their sum will still be zero. 
Hence, Vn is also an invariant subspace. 

Proposition 1. The decomposition of n under Sn, into irreducible subspaces is 

n
n nU V    

Proof. First, it is clear that Un  Vn = {(0, …, 0)}. We now prove that n
 = Un + Vn: 

1. If z  (Un + Vn), then z  n since (Un + Vn) is a subspace of n. 

2. For z  n
 , let 

1

1
 and 

n

i
i

z z z
n 

   can be written as 

1 2( , , ..., ) ( , , ..., )nz z z z z z z z z z      

and so, z  (Un + Vn). 
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Now, since Un is 1-dimensional, then it is irreducible. Finally, checking that Vn is 
also irreducible is an induction argument that can be found in [4]. In this way, this result 
tells us that n as a vector space with group of symmetry Sn can be written as an 
orthogonal sum of the subspaces Un and Vn, which are invariant under permutations and 
which can no longer be further decomposed.  

The decomposition of  is carried out in several steps. First, we establish a partition 
(into distinct classes) of the set of networks as below. 

Definition 12. Let g1, g2  G(N)\{Æ}. We will say that g1 and g2 belong to the same 

class if $ Sn such that  (g1) = g2. 

Let mG(N)  be the number of different classes in which the set G(N)\{Æ} can be 

partitioned according to Definition 12. Thus, if Gj(N) denotes the set of networks that 
belong to the class j, then 

1

( )\{ } ( )
Gm

j
j

G N G N


    

where we can notice that Gj(N)  Gk(N) =  if j  k. 
For further analysis, we will asume that G1(N) is the class of networks with exactly 1 

link and 
( )

( )
G NmG N  is the class of networks that contains the complete network, i.e. 

( )1( ) { ( ) 1} and ( ) { }
G N

N
mG N g G N g G N g      

Now, we turn back to the decomposition of . For each k  {1, …, mG(N)}, we 
define the subspace of value functions 

 { ( ) 0 if ( )}k kg g G N        (3) 

Then, the space   has the following decomposition: 

 
( )

1

G Nm

k
k

      (4) 

Each subspace k is invariant under Sn and the decomposition is orthogonal with 
respect to the invariant inner product on  given by 

 1 2 1 2
( )

, ( ) ( )
g G N

g g   


    (5) 
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Here, invariance of the inner product means that every permutation   Sn is not 
only a linear map on , but an orthogonal map with respect to this inner product. 
Formally, 1 2 1 2 1 2, ,  for every , .          

Example 2. For the set of networks of n = 3 nodes, G(3)(N), it turns out that  
(3) ( )

3
G N

m   and these classes are given by (Fig. 1) 

 (3)
1 ( ) {12}, {13}, {23}G N    

(3)
2 ( ) {12,  13}, {12, 23}, {13, 23G N 

 (3)
3 ( ) {12}, {13}, {23}G N   

Fig. 1. Partition of G(3)(N) 

and according to (3), the space of value functions is decomposed as 

 (3) (3) (3) (3)
1 2 3         

The next goal is to get a decomposition of each subspace of value functions (3)
k  

into irreducible subspaces and so, we will get it for  (3). 
The following value functions play an important role in describing the decom- 

position of the space . For k  {1, …, mG(N)}, we define ck  k as follows: 

 
1 if ( )

( )
0 otherwise

k
k

g G N
c g


 


  (6) 

Note that 
( ) ( )

.
G N G Nm mc    

Also, for each ( ){1, ..., }G Nk m  and for each z  n we define the value function  

zk  k as follows: 

( ) if ( )
( )

0 otherwise

i j k
ij g

k

z z g G N
z g 

   



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Definition 13. Suppose X1 and X2 are two representations for the group Sn, i.e., we 
have two vector spaces X1 and X2, where Sn is acting by linear maps. We say that X1 

and X2 are isomorphic if there is a linear map between them, which is 1–1 and onto and 
that commutes with the respective Sn-actions. Formally, there is an invertible linear 
map T: X1  X2 such that T(T) = T(x), for every   Sn and every x  X1. We then 
write X1  X2. 

For our purposes, X1 will be an irreducible subspace of  and X2 an irreducible 
subspace of n. 

Isomorphic representations are essentially “equal”; not only are they spaces of the 
same dimension, but the actions are equivalent under some linear invertible map 
between them. 

The next proposition provides a decomposition of the space of value functions for 
n = 3 players (nodes) into irreducible subspaces. 

Proposition 2. For k  {1, 2} 

(3) (3) (3)(3)k k kC R     

where (3) (3)
3 3 3 and { } .k

k k kC c U R z z V V     The decomposition is orthogonal. 

Proof. See Appendix.  

Remark 5. Recall that (3)
3 is a trivial representation generated by the value 

function that assigns 1 to the complete network and 0 elsewhere. 
Whereas from the above proposition, it is not difficult to verify that for k  {1, 2}: 

 (3) (3)
1 2 1 2{ ) ( ) if }k kC g g g g           

and 

(3) (3)

{ ( ): }

( ) 0k k
g G N g k

R g  
 

     
  

   

Proposition 2 gives a decomposition of the space of games that is a key ingredient 
in our subsequent analysis. 

Set (3) (3) (3) (3)
1 2 3 .C C C C    This is a subspace of value functions whose value on 

a given network g depends only on the number of links that form such network. 
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According to  Proposition 2, C (3) is the largest subspace of  where S3 acts trivially8. 
Let (3) (3) (3)

1 2 .R R R   Then 

(3) (3) (3)C R     

Thus, given a value function (3) ,  we may decompose it relative to the above 

as  = c + r, where, in turn,  and .k
k k ku a c r z    This decomposition is very well 

suited to study the image of  under any linear symmetric solution. The reason being 
the following version of the well known Schur’s lemma9. 

Theorem 2 (Schur’s Lemma). Any linear symmetric solution 

(3) (3) (3) (3) (3) 3
3 3( ) ( ) [ ]G N G N C R U V           

satisfies 
a) (3) (3)

3[ ( ) ]G N C U     

b) (3) (3)
3[ ( ) ]G N R V     

Moreover, 

 for each k  {1, 2, 3}, there is a constant $k   such that for every (g, )  
(3) (3)( ) kG N C  3(1,1,1) ,kg U        

 for each k  {1, 2}, there is a constant k   such that for every (g, zk)  G(3)(N) 

× (3)
kR 3, ) .k

kg z z V      

For many purposes it suffices to use merely the existence of the decomposition of 
the value function    (3), without having to worry about the precise value of each 
component. Nevertheless, it will be useful to have it. Thus, we give a formula for 
computing it. 

Proposition 3. Let (3).  Then 

 
3 2

1 1

k
k k k

k k

a c z
 

     (7) 

where 
 

 _________________________  

8i.e.,  =  for every   S3 and every  C(3). 
9See Appendix for a precise statement. 
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1. ak is the average of the values (g) with :g k  

)

{ ( ) }

g k

k

g

a
g G N g k






 


  

2. For every k  {1, 2}: 

( ) ( )

( ) ( ) (3 ) ( )

i i

k i
g k g k
g k g k

z k g k g 
 
 

   
 

  

Proof. See Appendix.  
Notice that the value functions appearing in formula (7) form bases for C (3) and R(3), 

respectively. In other words, C (3) = (3) 1 2
1 2 3 1 2, ,  and , .c c c R z z  

3.2. Some applications 

In this section, we show how to obtain characterisations of solutions easily by using the 
decomposition of a value function given by (7) in conjunction with Schur’s lemma. We start 
with providing a characterisation of all linear symmetric solutions  : G(3)(N) ×  

 
in the way given below. 

Proposition 4. The linear symmetric solutions : G(3)(N) ×  
 are precisely 

those of the form 

 
3 3

( , ) , 0)
( , ) ( , 0)

0 ( )

( , ) ) ( )

i

i k l k
k l A g k k A g k

l g

g g g     
   



     


  (8) 

for some real numbers {k, l(k, l)  A3}. 

Proof. Let  : G(3)(N) ×  
be a linear symmetric solution. According to Propo-

sition 3,    (3) decomposes as 

3 2

1 1

k
k k k

k k

a c z
 

     

where by linearity 
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3 2

1 1

( , ( , ) ( , )k
i k i k i k

k k

g a g c g z   
 

      

Now, from Schur’s lemma and  Proposition 3, we have 

3

3 2 3

1 1 1

2

1
( ) ( )

)

( , ( )
( ) }

( ) (3 ) ( )

i i

g k

i k k k k i k
k k k

k
k g k g k

g k g k

g

g a z
g G N g k

k g k g


    

  



  

  
 


   

 

   
 
 


  

  
 

 

Finally, the result follows from grouping terms and by setting 

1 1 2
(1, 0) 1 (1, 1) 1 (2, 1) 2

2
(2, 2) 2 (3, 2) 3

2 , , ,
3 3 3

2 , and
3

       

   

     

  
  

Corollary 1. The space of all linear and symmetric solutions on G(3)(N) ×  (3) has 
dimension 3 5.A   

Once we have such a global description of all linear symmetric solutions, we can 
understand the restrictions imposed by other conditions or axioms. For example, we can 
consider that if all players decide to form the complete network (there is a link between 
any pair of players), then the value (gN) is allocated among all the players. Formally: 

Axiom 5 (efficiency). The solution  is efficient if and only if for every    : 

( , )N N
i

i N

g g  


     

Notice that any allocation rule satisfies the efficiency axiom since it is the condition (1) 
restricted to gN. 

From the point of view of representation theory, the efficiency axiom has the 
following implications. 

Proposition 5. Let  : G(3)(N) ×  
 be a linear symmetric solution. Then  is 

efficient if and only if 



Solutions for network games and symmetric group representations 

 

111

1. ( , ) 0 for {1, 2},N
i kg c k     

2. 3

1
( , ) .

3
N

i g c    

Proof. First of all,  (3)
3C


 is exactly the subspace of value functions  where 

( ) 0.Ng   Of these, those in R(3) trivially satisfy ( ,N
i

i N

g 


   since (by Schur’s 

lemma) (G(N) × R(3)  V3. 
Thus, efficiency needs only be checked in C (3). Since ck is fixed by every 

permutation in S3, we have 

( , ) 3 ( , )N N
i k i k

i N

g c g c 


  

so,  is efficient if and only if for k  {1, 2}, 

3 ( , ) ( ) 0N N
i k kg c c g     

3 33 ( , ) ( ) 1N N
i g c c g     

Recall that C (3) is a subspace of function whose value on a given network g depends 
only on the number of links that form such a network. The next corollary characterizes 
the solutions on network games with these value functions in terms of linearity, 
symmetry, and efficiency. It turns out that among all linear symmetric solutions, the 
egalitarian solution is characterised as the unique efficient solution on C (3). Formally: 

Corollary 2. Let : G(3)(N) × 
 3 be a linear, symmetric and efficient solution. 

Then, for all   C (3): 

)
( ,

3

N
N

i

g
g


 


    

In other words, all linear, symmetric and efficient solutions (e.g., Myerson’s value) 
coincide with the egalitarian solution when restricted to these type of games C (3). 

Now, another immediate application is to provide a characterisation of all linear, 
symmetric, and efficient solutions. 

Theorem 3. The solution  : G(3)(N) ×  
 3 satisfies linearity, symmetry, and 

efficiency axioms if and only if it is of the form 
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2

1
( ) ( )

( )
( , ( ) (3 ) ( )

3
i i

N
N

i k
k g k g k

g k g k

g
g k g k g


    

  
 

     
 
 

  
 

  (9) 

for some real numbers {1, 2}. 

Proof. Let  : G(3)(N) ×  
 3 be a linear, symmetric, and efficient solution; and 

   (3). Then, by  proposition 3, Schur’s lemma and  Proposition 5: 

3 2

1 1

2

3 3
1

2

1
( ) ( )

( , ) ( , ) ( , )

( , ) ( )

( )
( ) (3 ) ( )

3
i i

N N N k
i k i k i k

k k

N
i k k i

k

N

k
k g k g k

g k g k

g a g c g z

a g c z

g
k g k g

   

 

   

 



  
 

 

 

    
 
 

 



  
 

  

Corollary 3. The space of all linear, symmetric, and efficient solutions of 
(3) (3)( )G N   has dimension 1 2{ , } 2.    

Example 3. From expression (9), notice that the solution given by (for player 1): 

1 1

2

)
( , ) [ 3 2 23 ]

3

[2 ({12, 13}) ({12, 23}) ({13, 23})]

N
N g

g
     

   


        

  

  

is linear, symmetric, and efficient for any choice of the parameters 1 and 2. 

Example 4. The Myerson value M is a solution that satisfies the axioms of 
linearity, symmetry, and efficiency. Thus (for n = 3), M is of the form (9) and its 
corresponding parameters are 1 = 1/6 and 2 = 0. 

4. The case n = 4 

As we have noticed, all previous applications and results follow from the decom- 
position of the space of value functions into direct sum of irreducible subspaces. In this 
part, we provide such decomposition for the particular case of four players. 
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In the case of three players, the set G(3)(N) was partitioned into 3 classes (the jth 
class contains networks with exactly j links, for j  {1, 2, 3}). However, the partition of 
G(4)(N) does not follow the same line of reasoning. The next example shows that there 
are networks with the same number of links, however they belong to different classes 
(recall Definition 12). 

Example 5. Let N = {1, 2, 3, 4}. 
 The networks g1 = {12, 13, 24} and g2 = {12, 24, 34} belong to the same class, 

since there is a permutation   S4 such that (g1) = g2. Such a permutation is given by 
(1) = 2, (2) = 4, (3) = 1 and (4) = 3. 

 The networks g1 = {24, 34} and g2 = {12, 34} do not belong to the same class, 
since  S4 such that (g1) = g2. 

Notice that (4) ( )\{ }G N  = 63 and, according to Definition 12, ( 4) ( )G N
m  = 10 classes. 

The following networks are representatives of each class. 

 

Fig. 2. Representatives of classes in the partition of ( ) 

The number of networks belonging to each class is shown below. 

k 1 2 3 4 5 6 7 8 9 10 
(4) ( )kG N   6 12 3 12 4 4 12 3 6 1 

 
We follow the same line of reasoning as before, i.e., we first obtain a decomposition 

of each subspace of value functions (4)
k  into irreducible subspaces, and so we will get 

it for (4) .  
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For that purpose, let z  V4 and for k  {1, 4, 5, 6, 9} define the value functions 
(4)

k kz   as 

 

(4)( )  if ( )
( )

0 otherwise

i j k
k ij g

z z g G N
z g 

   



  (10) 

also define z2, z2  (4)
2  and z7, z7  (4)

7 as 

(4)
2 1

2
( )  if ( ) and ( ) 1

( )
0 otherwise

i j
ij g

z z g G N g
z g 

    


 
  

 

(4)
2 1

2
( )  if ( ) and ( ) 1

( )
0 otherwise

i j
ij g

z z g G N g
z g 

    


 
 (11) 

(4)
7 1

7
( )  if ( ) and ( ) 2

( )
0 otherwise

i j
ij g

z z g G N g
z g 

    


 
 

 

(4)
7 1

7
( )  if ( ) and ( ) 2

( )
0 otherwise

i j
ij g

z z g G N g
z g 

    


 
  (12) 

The nature of the previous value functions will be justified in the decomposition of 
 (4), presented in the following: 

Proposition 6. For k  {1, …, 9}, the decomposition of each (4)
k (under S4) into 

irreducible subspaces is 

(4) (4) (4) (4)
k k k kC R T      

where 
 (4)

4 if  {1, ..., 9},k kC c U k   
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 
 
   

4(4)

4 4

  if  {1, 4, 5, 6, 9}

  if {2, 7}

k

k k k

z z V k
R

z z V z z V k

   
   

  

  (4) (4) (4)
k k kT C R


   does not contain any summands isomorphic to neither U4 

nor V4. 
The decomposition is orthogonal. 

Proof. See Appendix.  
It is not difficult to verify that  4

10 10 4c U    is a trivial representation generated 

by the value function that assigns 1 to the complete network and 0 elsewhere. 
On the other hand, from the above proposition, it turns out that for k  {1, …, 9}: 

(4) (4) (4)
1 2 1 2{ ( ) ( )  if g , ( )}k k kC g g g G N        

Remark 6. Proposition 6 does not quite give a decomposition of (4)
k into irre- 

ducible summands. The subspace (4)
kC is irreducible and (4)

kR is a direct sum of 

irreducible subspaces. Whereas (4)
kT  may or may not be irreducible (depending on k), 

but, as we shall see, the exact nature of this subspace plays no role in the study of linear 
symmetric solutions since it lies in the kernel of any solution of this kind. 

Set 
10

(4) (4)

1
.k

k
C C


   This is a subspace of value functions whose value on a given 

network g depends only on the ‘shape’ of such network10. Let 
 

(4) (4)

1, 2, 4, 5, 6, 7, 9
k

k
R R


   

10
(4) (4)

1
and .k

k
T T


   Then, 

(4) (4) (4) (4)C R T      

Corollary 4. If (4) (4) 4( )G N     is a linear symmetric solution, then for 

every (4) (4)( , ( ) :g G N T   

( , ) 0g     

Proof. Let (4) (4) (4) (4) (4) (4) 4
4 4( ) ( ) [ ]G N G N C R T U V          be a li- 

near symmetric solution. Assume X  T(4) is an irreducible summand in the decomposition 

 _________________________  

10Following Jackson and Wolinsky [7], the value functions in C(4) are known as anonymous. 
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of T (4) (even while we do not know the decomposition of T (4) as a sum of irreducible 
subspaces, it is known that such a decomposition exists). Let p1 and p2 denote orthogonal 

projection of 4 onto U4 and V4, respectively. Now, (4) (4)( )G N   4
4 4U V    

may be written as = (p1 ° , p2 ° ). Denote by  (4) (4)( )X G N   the inclusion, 

then, the restriction of  to X may be expressed as 1 2,X p p               

On the other hand, 1 4 2 4 and p X U p X V          are linear symmetric 

maps; since X is not isomorphic to either of these two spaces, thus Schur’s lemma (see 
Appendix for the statement) implies that 1p     and 2p     must be zero. Since 

this is true for every irreducible summand X of T (4),  is zero on all of T ( 4 ) . 

Remark 7. According to Proposition 6 and Corollary 4, in order to study linear 
symmetric solutions, one needs to look only at those value functions inside (4) (4)C R   
(i.e., one has to take care of those copies of U4 and V4 contained in  (4)). 

Example 6. From  Proposition 6, we know the number of copies of U4 (trivial 
representation) and V4 (standard representation), inside of each (4):k   

 
(4)
k   (4)

1   (4)
2   (4)

3   (4)
4   (4)

5   (4)
6   (4)

7   (4)
8   (4)

9   (4)
10  

# of copies of  U4 1 1 1 1 1 1 1 1 1 1 
# of copies of V4 1 2 0 1 1 1 2 0 1 0 

 
As we have already pointed out, in the case of four players we can also obtain 

characterisations for the class of linear and symmetric solutions, as well as for the class 
of linear, symmetric, and efficient solutions. Once again, the key is the decomposition 
of  (4) into irreducible subspaces (Proposition 6), together with Schur’s lemma. 

5. Concluding remarks 

We have noticed that the point of view we adopt in this article depends heavily on 
a decomposition of the space of value functions as a direct sum of “special” subspaces. 
In the cases when n = 3, 4, it was decomposed as a direct sum of three orthogonal 
subspaces: a subspace of anonymous value functions, another subspace which we call R(n), 
and a subspace T(n) (wich is zero for the case of n = 3 nodes) that plays only the role of the 
common kernel of every linear symmetric solution. Although R(n) does not have a natural 
definition in terms of well-known network theoretical considerations, it has a simple 
characterisation in terms of vectors all of whose entries add up to zero. 



Solutions for network games and symmetric group representations 

 

117

Characterisations of solutions follow from such decomposition in an very economical 
way. So, an open challenge is to obtain the general decomposition for  (n) into direct 
sum of irreducible subspaces since, mathematically, the general case seems to have a much 
more complicated structure. 

Although it is true that the characterisation results could be proved without any 
explicit mention to the representation theory of the symmetric group, we feel that by 
doing that we would be withholding valuable information from the reader. This 
algebraic tool, we believe, sheds new light on the structure of the space of network 
games and their solutions. A part of the purpose of the present paper is to share this 
viewpoint with the reader. There is, however, much more work that could be done (e.g., 
extend the theory for any number of players), and we ecourage interested readers to 
consider how they might use these and other ideas to contribute to the understanding of 
network games and their solutions. 

Appendix 

A reference for basic representation theory is Fulton and Harris [3]. Nevertheless, 
we recall all basic facts that we need. 

The symmetric group Sn acts on  via linear transformations (i.e., is a representation 
of Sn). That is, there is a group homomorphism : Sn  GL(), where GL() is the 
group of invertible linear maps in . This action is given by 

1( : [ ( ) ( )]g g g              

for every , and ( ).nS g G N      

Definition 14. Let H be an arbitrary group. A representation for H is a homo- 
morphism : H  GL(X), where X is a vector space and GL(X) = {T: X  XT linear 
and invertible}. In other words, a representation of H is a map assigning to each element 
h  H a linear map (h): X  X that respects multiplication 

(h1h2) = (h1)(h2)  

for all h1, h2  H. 
One usually abuses notation and talks about the representation X without explicitly 

mentioning the homomorphism . Thus, when applying the linear transformation 
corresponding to h  H on the element x  X, we write hx rather than ((h))(x). 

The space of payoff vectors n is also a Sn-representation 
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1 2 1 2 (1) (2) ( )( , , ..., ) : [ ( , , ..., ) ( , , ..., )n n nx x x x x x x x x          

Definition 15. Let X1 and X2 be two representations for the group H. 
 A linear map T: X1  X2 is said to be H-equivariant if T(hx) = hT(x) for every h 

 H and every x  X1. 
 X1 and X2 are said to be isomorphic H-representations, X1   X2, if there exists an 

H-equivariant isomorphism between them. 
Thus, two representations that are isomorphic are, as far as all problems dealing 

with linear algebra with a group of symmetries, the same. They are vector spaces of the 
same dimension where the actions are seen to correspond under a linear isomorphism. 

Definition 16. A representation X is irreducible if it does not contain a nontrivial 
invariant subspace. That is, if Y  X is also a representation for H (meaning that hy  Y 

"h  H), then Y is either {0} or all of X. 

Proposition 7. For any representation X of a finite group H, there is a decomposition 

1 2
1 2

jaa a
jX X X X        

where the Xi are distinct irreducible representations. The decomposition is unique, as 
are the Xi that occur and their multiplicities ai. 

This property is called ‘complete reducibility’ and the extent to which the decom- 
position of an arbitrary representation into a direct sum of irreducible ones is unique is 
one of the consequences of the following: 

Theorem 4 (Schur’s lemma). Let X1, X2 be irreducible representations of a group H. 
If T: X1  X2 is H-equivariant, then T = 0 or T is an isomorphism. 

Moreover, if X1 and X2 are complex vector spaces, then T is unique up to multi- 
plication by a scalar   . 

The previous theorem is one of the reasons why it is worth carrying around the group 
action when there is one. Its simplicity hides the fact that it is a very powerful tool. 

Following Fulton and Harris [3], the only three irreducible representations of S3 are 
the trivial U3, the standard V3, and alternating representation11 U . Then, for an arbitrary 
representation X of S3, we can write 

 3 3
a b cX U U V       (13) 

 _________________________  

11Here, the action is given by x = sgn( )x, for   S3 and 𝑥  . 
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and there is a way to determine the multiplicities a, b and c; in terms of  = (123) and 
 = (12), which generates S3. c, for example, is the number of independent eigenvectors 
for  with eigenvalue 12 whereas a + c is the multiplicity of 1 as an eigenvalue of , 
and b + c is the multiplicity of  –1 as an eigenvalue of . 

Proof of Proposition 2. We start with showing that (3)
k has exactly 1 copy of U3 

and 1 copy of V3, if k  {1, 2}. 
It is clear that { ( ) \{ }}g g G N   B form a basis for (3) ,  where 

 
1 if 

( )
0 otherwiseg

g g
g


 





  (14) 

For (3) ,  it is easy to verify that []B has the characteristic polynomial 

2 2( ) [( 1)( ( )] ( 1)p x x x x x         

and []B has the characteristic polynomial 

2 5( ) ( 1) ( 1)p x x x     

From these and (13), we have that c = 2, a + c = 5 and b + c = 2. Then, 

(3) 3 2
3 3U V      

This implies directly that if k  {1, 2}, then every k has exactly 1 copy of U3 and 
1 copy of V3, since 

( ) ( ) 3  and dim 3.
G N G Nm m kc U     

Now, we define the map Tk: n  k by Tk(z) = zk. This map is an isomorphism 

between (3)
kC and U3 (similarly, between (3)

kR and V3) since it is linear, S3-equivariant 

and 1–1. From  Proposition 1 we have the splitting 3 = U3  V3 . Thus, inside k, we 

have the images of these two subspaces: (3) (3)
3 3( ) and ( ).k k

k kC T U R T V    

Finally, the invariant inner product , gives an equivariant isomorphism, in par- 

ticular, it must preserve the decomposition. This implies orthogonality of the decom- 
position. 

 _________________________  

12Denoting by 1, , 2 the cube roots of unity. 
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Proof of Proposition 3. We start with computing the orthogonal projection of  
onto C (3). Notice that {ck} is an orthogonal basis for C (3), and that 

2 (3){ ( ) }kc g G N g k     

Thus, the projection of  onto C (3) is 
3

1

,
,

k
k

k k k

c
c

c c






   

and so 

(3)

( )

, { ( ) }

g kk
k

k k

g
c

a
c c g G N g k


 

 
 


  

Now, for each k  {1, 2, 3},  we define hk:  (3)  (3) as 

( )

( ( )

i

k
i

g k
g k

h g 



  


  

where each hk is S3-equivariant, and observe that h3() = (gN)(1, 1, 1). Let z  V3, 
then hk(zl) = 0 if k  l, whereas (by Schur’s lemma) for k  {1, 2, 3} k   such 

that hk(zk) = kz. 
Let p: 3  V3 be the projection of 3 onto V3 given by 

( )i ip x x x    

where 
1

1
.

n

i
i

x x
n 

  This projection is equivariant, sends U3 to zero and it is the identity on V3. 

Since (p ⸰ hk)() = kzk, then 
1

( (k
k

k

z p h 


 Thus, we evaluate 

( ) ( )

( ( ( ) (3 )

i i

k
k k

g k g k
g k g k

p h z k g k g   
 
 

       
 

  

There is a remarkably effective technique for decomposing any given finite 
dimensional representation into its irreducible components. The tool is character theory. 
In the analysis of the representations of S3, the key was to study the eigenvalues of the 
actions of individual elements of S3. This is the starting point of character theory. 
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Finding individual eigenvalues, however, is difficult. Luckily, it is sufficient to consider 
their sum, the trace, which is much easier to compute. 

Definition 17. Let : H  GL(X) be a representation. The character of X is the 

complex-valued function X: H  , defined as 

 ( ) ( ( ))X h Tr h     

The character of a representation is easy to compute. If H acts on an n-dimensional 
space X, we write each element h as an n × n matrix according to its action expressed in 
some convenient basis, then sum up the diagonal elements of the matrix for h to get

( ).X h  For example, the trace of the identity map of an n-dimensional vector space is 

the trace of the n × n identity matrix, or n. In fact, ( ) dimX e X  for any finite dimen-

sional representation X of any group. 
Notice that, in particular, we have X(h) = X(ghg–1) for g, h  H, so that X  is 

constant on the conjugacy classes of H; such a function is called a class function. 

Definition 18. Let Cclass(H) = {f: H  C f  is a class function on H}. If 1, 2  class(H), 

we define an Hermitian inner product on class(H) by 

 
1 2 1 2

1
, ( ) ( )

h H

h h
H

   


 
  (15)  

The character of a representation of a group H is really a function on the set of 
conjugacy classes in H. This suggests expressing the basic information about the 
irreducible representations of a group H in the form of a character table. This is a table 
with the conjugacy classes [h] of H listed across the top, usually given by 
a representative h, with the number of elements in each conjugacy class over it; the 
irreducible representations of H listed on the left and, in the appropriate box, the value 
of the character on the conjugacy class [h]. For example, if H = S4 and we only focus on 
the irreducible representations U4 and V4, then13: 

 1 6 8 6 3 
S4 [e] [(12)] [(123)] [(1234)] [(12)(34)] 
U4 1 1 1 1 1 
V4 3 1 0 –1 –1 

 _________________________  

13In fact, there are five irreducible representations for S4. 
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Finally, the multiplicities of irreducible subspaces in a representation can be 
calculated via: 

Proposition 8. If 1 2
1 2 ,jaa a

jZ Z Z Z      then the multiplicity Zi (irreducible 

representation) in Z, is: 

,
ii z za     

Where ,  is the inner product given by (15). 

Proof of Proposition 6. First, ( 4) ( 4)
4 4

,  and ,
k k

U V 
    are the number of 

subspaces isomorphic to the trivial (U4) and standard representation (V4) within (4),k    

respectively. The characters for each (4)
k  are given by14: 

  1 6 8 6 3 
S4 [(1)] [(12)] [(123)] [(1234)] [(12)(34)] 

(4) (4)
1 9,    6 2 0 0 2 
(4) (4)
2 7,    12 2 0 0 0 
(4) (4)
3 8,    3 1 0 1 3 
(4)
4   12 0 0 0 4 
(4) (4)
5 6,    4 2 1 0 0 
(4)
10   1 1 1 1 1 

 
Thus from (15) ( 4)

4
, 1

k
U

    for each k  {1, …, 10} and 

( 4)
41

1 if  {1,  4, 5, 6, 9}

, 2 if {2, 7}

0 if {3,  8, 10}
V

k

k

k


 


 
 

  

The last part is to identify such copies of U4 and V4 inside (4).k   To this end, for 

k  {1, …, 10} let (4)
4:k kf U C be given by fk(u) = k in which there exists t   such 

that u = t(1, 1, 1, 1) and k(g) = t if g  Gk(N) and k(g) = 0 otherwise. The function fk  

 _________________________  

14In which a convenient basis is the one given in (14). 
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is an isomorphism between U4 and (4)
kC since it is linear, S4-equivariant, and one to one. 

Thus, (4)
k contains the image of this subspace: (4)

4( ).k kC f U  

Now, for {1,  4, 5, 6, 9}k define the functions 4 (4):  by ( ) k
k k kL V L z z     

(given by (10)). These maps are isomorphisms between (4)
kR and V4, and (4)

kR = Lk(V4).  

In the same way, for k  {2, 7} define the functions Lk, Lk : V 4   (4)
k by Lk(z) = zk  

and Lk (z) = zk (given by (11) and (12)), respectively. Thus, (4)
4 4( ) ( ).k k kR L V L V    

Orthogonality of the decomposition follows again from the fact that the invariant inner 
product ,  gives an equivariant isomorphism, which preserves the decomposition. 
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