
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 
No. 4 2019 
DOI: 10.37190/ord190402 

 

Fatima BELLAHCENE1 

APPLICATION OF THE POLYBLOCK METHOD 
TO SPECIAL INTEGER CHANCE CONSTRAINED PROBLEM 

The focus in this paper is on a special integer stochastic program with a chance constraint in which, 
with a given probability, a sum of independent and normally distributed random variables is bounded 
below. The objective is to maximize the expectation of a linear function of the random variables. The 
stochastic program is first reduced to an equivalent deterministic integer nonlinear program with mon-
otonic objective and constraints functions. The resulting deterministic problem is solved using the dis-
crete polyblock method which exploits its special structure. A numerical example is included for illus-
tration and comparisons with LINGO, COUENNE, BONMIN and BARON solvers are performed. 

Keywords: stochastic programming, integer nonlinear programming, monotone optimization, polyblock 
method 

1. Introduction 

We consider a stochastic program with integer decision variables ,jx 1, ...,j n=  
where, the expectation of a linear function of the random variables ( )jY x  is maximized 

under a chance constraint in which, with a predefined probability level α, is 
1

( )
n

j
j

Y x
=
  

bounded above by a positive constant b. The problem is formulated as 
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where 1 2( , , ..., )nl l l l=  and 1 2( , , ..., )nd d d d= are vectors of integer numbers with 

j jl d≤  for 1, ...,j n=  and jβ , 1, ...,j n=  are positive numbers. 
Such a decision problem may arise in higher education applications when an insti-

tution wishes to maximize the quality or the desirability of a class of students while satisfy-
ing a constraint on the number of students who enrol due to its limited capacity. Students 
are also categorized into different types, 1, ..., .j n=  The decision variables jx  represent 
the number of applicants of the type j who are admitted and the random variables ( )jY x  
represent the number of students of type j who enrol. It is assumed that the institution im-
poses an upper bound b on enrolment that must be met with a high degree of probability α. 
If an admitted student of type j enrols with a probability jp  independent of other students, 
then each random variable ( )jY x  has a binomial distribution with parameters ,j jp x  and 

therefore has mean j j jp xμ =  and variance 2 (1 ) .j j j j j jp p x v xσ = − =  
Similar problems may arise in other applications such as airline overbooking prob-

lems, where jx  is the number of reservations accepted and ( )jY x  is the number of pas-
sengers or guests who show up; marketing, where jx  is the number of solicitations is-
sued and ( )jY x  is the number of responses and manufacturing, where jx  is the number 
of items produced and ( )jY x  is the number of non-defective items. 

In each of these applications, the number of items is generally large. Then, the binomial 
random variables are easily approximated by normal random variables. Of course, the lower 

bounds jl  of the variables jx  should be sufficiently large to allow this approximation be-

cause we usually approximate a binomial random variable ( , )j jB p x  with a normal distri-

bution from the time where 15j jp x >  which yields that 30.jx >  

Under the assumption that the item types act independently, 
1

( )
n

j
j

Y x
=
  is approxi-

mately normal with mean μ  and variance 2,σ where 



Application of the polyblock method to a special integer chance constrained problem 

 

25

 2 2

1 1 1 1
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p x v xμ μ σ σ
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= = = =      (2) 

The objective function can be written as 

 
1 1 1

( )
n n n

j j j j j j j
j j j

E Y x p x c xβ β
= = =

 
= = 

 
     (3) 

Furthermore, as introduced by Charnes and Cooper [5], the lower-bound chance 
constraint in (1) may be written as 

1
Pr ( ) 0

n

j
j

bY x b b Kα
μα Φ α μ σ

σ=

  − ≤ ≥ ⇔ ≥ ⇔ − + + ≤   
  

  

where Φ is the cumulative function of the standard normal distribution and Kα  is its 
α-quantile. We assume that 1/2,α ≥  which is justified by the fact that we are interested in 
the politics which guarantees the achievement of the constraints with high probability. 

Using this approximation and taking into account the expressions (2) and (3), the 
stochastic program (1) becomes 
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 (4) 

As a result, 0g  is a nonconvex and increasing function of jx  on , .j jl d    

Note that problem (1) may not be necessarily restricted to a single-row chance con-
straint. Other technical constraints ( ) 0ig x ≤ , 1, ...,i m=  with linear or nonlinear in-
creasing functions gi’s can be added to the constraint set without changing anything in 
the algorithm that we present in Section 2. In sum, we are dealing with the following 
nonlinear integer monotonic program: 
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  (5) 

where both f and ig  are increasing functions. 
For monotonic programming problems, Tuy [20] develops an outer approximation 

algorithm called the polyblock algorithm. Li et al. [15] propose pth power convexifica-
tion and concavification schemes that transform a monotone function into either a con-
cave or a convex function. According to Tuy [20], monotonic programming approaches 
have been demonstrated to be efficient for solving multiplicative programming prob-
lems, while alternative methods hardly handle them. The efficiency of the monotonic 
programming approaches has been reported with computational results on various clas-
ses of global optimization problems, such as linear or polynomial fractional program-
ming [10, 21], and discrete nonlinear programming [22]. 

Mixed-integer nonlinear programming (MINLP) problems have been studied in the 
literature. In the early 1970s, Geoffrion [9] introduces the generalized benders decom-
position (GBD) method. The GBD method uses duality theory to derive one single con-
straint that combines the linearizations derived from all the original problem constraints 
and solves a mixed-integer linear programming (MILP) master problem. In the 1980s, 
Duran and Grossmann [7] introduce the outer approximation (OA) decomposition algo-
rithm. The OA method is very similar to the GBD method, differing only in the defini-
tion of the MILP master problem. Specifically, instead of combining the linearizations 
derived from all the original problem constraints, it uses linearizations for each nonlin-
ear constraint. The fundamental insight behind the algorithm is that the MINLP problem 
is equivalent to a MILP problem of finite size. This latter algorithm was subsequently 
improved in the 1990s by Fletcher and Leyfer [8]. Quesada and Grossmann propose the 
LP/NLP-Based Branch-and-Bound (LP/NLP–BB) algorithm [17]. This method is an 
extension of the OA method but instead of solving a sequence of master problems, the 
master problem is dynamically updated in a single branch-and-bound tree that closely 
resembles the branch-and-cut method for MILP. In the same period, a related method 
called the Extended Cutting Plane (ECP) method, which is an extension of Kelley’s 
cutting plane method [11] for solving convex NLPs, was proposed by Westerlund and 
Pettersson [24]. The main feature of the ECP method is that it does not require the use 
of an NLP solver. The algorithm is based on the iterative solution of a reduced master 
problem (RMP). Linearizations of the most violated constraint at the optimal solution 
of RMP are added at every iteration. Indeed, there are many modern software packages 
implementing the cited algorithms (For more details, see, for example, Abhishek et al. [1], 
Bonami et al. [3], Bonami et al. [4]). 



Application of the polyblock method to a special integer chance constrained problem 

 

27

Since our problem is nonconvex, it cannot be solved by the MINLP methods men-
tioned above. Therefore, solvers such as SCIP [23], COUENNE [6], BARON [12],  
ANTIGONE [16], BONMIN [6], LindoGlobal [13, 14] must be used. However, the 
special structure of the studied problem encouraged us to design the discrete polyblock 
method [18] to solve it. This method applies only to monotonic problems where all the 
decision variables are integers, which is the main concern of this paper. Moreover, it 
does not require linearization or convexification or any other properties except mono-
tonicity of the functions. At each stage of the technique, the feasible domain is divided 
into two sub-domains and each of them is analyzed in order to discard the one not con-
taining promising solutions. The results found by the polyblock algorithm are compared 
with those given by LINGO, COUENNE, BONMIN, and BARON in terms of running 
time and number of iterations. 

1.1. The discrete polyblock method 

Let us first review some properties of monotonic functions from the general results 
in [19, 20, 22]. 

For any two vectors , nx y ∈  we write x y≤  to mean j jx y≤  for 1, ..., .j n=  If 

l d≤  then the box [ ],l d  is the set of all nx∈  satisfying .l x d≤ ≤  The function 
: nf →   is said to be increasing on n

+  if ( ) ( )f x f y≤  whenever .x y≤  Many 
functions encountered in various applications are increasing in this sense. Outstanding ex-
amples are the production functions and the utility functions in mathematical economics 
(under the assumption that all goods are useful). The sum of two increasing functions is 
increasing and a product fλ  is increasing if 0λ >  and f  is increasing. Consequently, pol-

ynomials with non-negative coefficients and posynomials 
1 1

( ) ij
nm

a
j i

j i
c x

= =
 ∏  with 0jc ≥  and 

0,ija ≥  such as the well-known Gobb–Douglas function 
1

( ) ,i

n
a
i

i
f x x

=

= ∏ 0ia ≥  are in-

creasing. 
Letting 

 { }0,...,( ) max ( )i m iG x g x==   (7) 

the boundary of the feasible set { }( ) 0, 0, ,iS x X g x i m= ∈ ≤ =   of problem (5) 

can be expressed as { }( ) 0x X G xΓ = ∈ = . 
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Let [ ],α β  be an integer box in X  with Sα ∈  and .Sβ ∉  Since ( ) 0G α <  and 
( ) 0G β > , there must exist a boundary point bx  in X  that satisfies ( ) 0bG x =  (i.e., 
( ) 0i bg x ≤ , 0 1, ..., m=  and there exists at least one i  such that ( ) 0i bg x = ). bx  is the 

intersection point of the line * *(1 ) ,x λ α λ β= + −  *0 1λ≤ ≤  and the boundary Γ. 
Assume now that bx  is not integral. Denote by bx    the integer vector with its 

jth component being the maximum integer less than or equal to , ,b jx 1, ...,j n=  and 

denote by bx    the integer vector with its jth component being the minimum integer 
greater than or equal to , ,b jx  1, ..., .j n=  Let ,F

bx x=     and .I
bx x=     It is easy to 

see that Fx is a feasible point ( )Fx S∈  and Ix  is infeasible ( ).Ix S∉  The monotonic-
ity of  f and ig  implies that there are no feasible points better than Fx  in , Fxα    and 

there are no feasible points in , .Ix β    Therefore, we can remove the integer boxes 

, Fxα    and ,Ix β    from [ ],α β  for further consideration after comparing Fx with 

the incumbent solution. 
The following theorem shows how to cut a revised domain into sub-boxes. 

Theorem 1. Let [ ], ,A α β=  [ ], ,B α γ=  and [ ],C γ β=  integers boxes where 
α γ β≤ ≤ . Then both \A B  and \A C  can be partitioned into at most n  new integer 
boxes (Xun et al., [18]). 

 [ ] [ ]
1

1 11
\ , 1, ,

jn n

k k j j k k
k k jj

A B α γ γ β α β
−

= = +=

 
 = × + ×  

 
∏ ∏  (8) 

 [ ] [ ]
1

1 11
\ , , 1 ,

jn n

k k j j k k
k k jj

A C γ β α γ α β
−

= = +=

 
 = × − ×  

 
∏ ∏   (9) 

The discrete polyblock method consists of finding a feasible point Fx and an infea-
sible point Ix  and generating integer boxes using the formulas (8) and (9). The best 
feasible solution obtained during the generation of integer boxes is kept as an incumbent 
solution. Moreover, by the monotonicity of the problem, an integer box [ ],α β  with 

( )f β  less than the objective value ( )Ff x  of the incumbent Fx  can be discarded. 
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1.2. The solution algorithm 

The algorithm of the polyblock method uses the bisection method or Newton’s 
method to find the boundary point. At bx  each iteration of the algorithm, the feasible 
domain is divided into two subdomains. Each subdomain is analysed in order to discard 
the one not containing a feasible point which gives an objective function value greater 
than the value yielded by the incumbent solution. 

Initialization. Let 1 2( , , ..., )nl l l l=  and 1 2( , , ..., ).nd d d d=  
If l is infeasible, then problem (5) has no feasible solution. 
If d is feasible, then d is the optimal solution to (5), stop. 
Otherwise, set opt ,x l= opt opt( ),f f x=  [ ](1) ,X l d=  and set 1.k =  

Step 1 (box selection and boundary point). 
Select a box [ ], kXα β ∈  with the highest objective value ( ).f β  
Set [ ]( ) ( ) \ ,k kX X α β= . 
Find the root *λ  of the following equation: 

 [ ] [ ](1 ) 0, 0,1G λα λ β λ+ − = ∈    

where G  is defined in (7). 
Set ( ) * *(1 ) .k

bx λ α λ β= + − Set ( )Fk k
bx x =    and ( ) .Ik k

bx x =    Fkx  is defined by 

rounding down and Ikx  by rounding up the components of ( ) .k
bx  

If ( ) ,Fk k
bx x=  set ( ) ,Ik k

b jx x e= + where je  is the jth unit vector in n  with 
( )k
b jx e β+ ≤ . 

If opt( ) ,Fkf x f>  set opt
Fkx x=  and opt ( )Fkf f x= . 

Step 2 (partition and remove). 
Apply the formula (9) to partition the set [ ]( )

1 , \ ,k IkxΩ α β β =    into a union of 

integer boxes. 
Let ˆˆ ,α β 

   the integer box containing the point xFk. Set ( ) ( )
1 1

ˆˆ\ ,k kΩ Ω α β =   . 

Apply the formula (8) to partition the set ( )
2

ˆˆ ˆ, \ , .k FkxΩ α β α   =     

Set ( ) ( ) ( )
1 2 .k k kY Ω Ω= ∪  

Perform the following for each integer box [ ],α β  generated in the partition process: 
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• If β is feasible, remove [ ],α β   from ( ).kY   Furthermore, if opt( ) ,f fβ >   set 

optx β=  and opt ( ).f f β=  

• If α is infeasible, remove [ ],α β  from ( ).kY  
• If opt( ) ,f fβ ≤  remove [ ],α β  from ( ).kY  
• If α is feasible, β is infeasible and opt( ) ,f fα >  set optx α=  and opt ( ).f f α=  

Denote ( )kz  the set of integer boxes after the above removing process. 

Step 3 (updating integer boxes). 
Remove all integer boxes [ ],α β  in ( )kX  with opt( ) .f fβ ≤  

Set ( 1) ( ) ( ).k k kX X Z+ = ∪  
If ( 1) ,kX + = ∅  stop. Otherwise, set 1k k= + and go to Step 1. 
Two box-selection strategies can be used in Step 1. The first strategy is to select the 

integer box in ( )kX  with the maximum objective function value of the upper bound 
point. The second strategy is to select the last integer box included in ( ) .kX  The finite 
convergence of the algorithm can be easily seen from the finiteness of X  and the fact that 
at each iteration at least the integer points Fkx  and Ikx  are removed from ( ) .kX  The algo-
rithm proceeds successively by refining the partition and removing integer boxes that do not 
contain promising solutions and finally terminates in a finite number of iterations. 

1.3. Illustrative example 

Let us consider the following example with a similar structure to that of the problem 
(1), with α = 0.998, b = 125, p1 = 0.80, p2 = 0.90, β1 = 400, β2 = 200, l1 = 55, l2 = 70, 
d1 = 60, d2 = 76. The termination step in the bisection method is set to 0.0002.ε =  The 
two last constraints are added to show that this method applies also to multiple con-
straints. Problem (5) is formulated as: 

{ }

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

2
1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.16 0.09 125 0
( ) 2 4380 0

( ) 5 435 0

55 60,  70 76

f x x x

g x x x x x
g x x x x x

g x x x

x X x x x+

= +

= + + + − ≤
= + − − ≤

= + − ≤

∈ = ∈ ≤ ≤ ≤ ≤
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The feasible set of this problem is given in Fig. 1. 
Initialization. Let (55, 70)l = , (60, 76)d =  

(55, 70)l =  is feasible, (60, 76)d =  is infeasible. 
Set opt (55, 70)x =  and opt 30 200f = . 

[ ] [ ](1) , (55, 70), (60, 76)X l d= = ; 1k = . 

 
Fig. 1. Feasible region 

Iteration 1. Step 1. Select [ ] [ ] [ ], , (55, 70), (60, 76)l dα β = = . Set 

 [ ](1) (1) \ ,X X α β= = ∅  

We use the bisection procedure to solve the equation 

[ ](55, 70) (1 )(60, 76) 0G λ λ+ − =  

This method finds out the root * 0.31960.λ =  Then the intersection point is given 
by: (1) (58.4020, 74.0824)bx = . The points 1 (58, 74)Fx =  and 1 (59, 75)Ix =  are repre-
sented in Fig. 2. 

Since 1
opt( ) 31 880 30 200 ,Ff x f= > =  set opt (58, 74)x =  and opt 31 880.f =  

Step 2. Partition the set [ ](1) 1
1 , \ ,IxΩ α β β =    into two integer boxes. 
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The increase in f implies that there are no feasible points in 1,Ix β    = [(59, 75), 

(60, 76)]. Therefore, we can remove this box from the box [ ],α β = [(55, 70), (60, 76)]. 
Formula (9) gives us: 

[ ] [ ]
[ ] [ ]{ } [ ] [ ]{ }
[ ] [ ]{ } [ ] [ ]{ }

[ ] [ ]

(1)
1

1 1 2 2 1 1 2 2

(55, 70), (60, 76) \ (59, 75), (60, 76)

, 1 , , , 1

55, 58 70, 76 59, 60 70, 74

(55, 70), (58, 76) (59, 70), (60, 74)

Ω

α γ α β γ β α γ

=

= − × ∪ × −

= × ∪ ×

= ∪

 

 
Fig. 2. Illustration for iteration 1 

Since 1 ˆˆ ,Fx α β ∈    = [(55, 70), (58, 76)], set (1) (1)
1 1

ˆˆ\ ,Ω Ω α β =   = [(59, 70), (60, 74)]. 

Since f  is an increasing function, there are no feasible points better than 1Fx  in 1ˆ, Fxα     

= [(55, 70), (58, 74)].  
Then, we can remove the box 1ˆ, Fxα    from the box ˆˆ,α β 

   by applying for- 

mula (8). 
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[ ] [ ]
[ ] [ ]{ } [ ] [ ]{ }
[ ] [ ]{ } [ ] [ ]{ }

[ ] [ ]{ }
[ ]

(1) 1
2

1 1 2 2 1 1 2 2

ˆˆ ˆ, \ ,

(55, 70), (58, 76) \ (55, 70), (58, 74)

1, , , 1,

59, 58 70, 76 55, 58 75, 76

55, 58 75, 76

(55, 75), (58, 76)

FxΩ α β α

γ β α β α γ γ β

   =   
=

= + × ∪ × +

= × ∪ ×

= ∅ ∪ ×

=

 

Set [ ] [ ](1) (1) (1)
1 2 (59, 70), (60, 74) (55, 75), (58, 76)Y Ω Ω= ∪ = ∪ . 

None of the integer boxes in (1)Y  is removed, then, (1) (1)Z Y= . Only the coloured 
parts are removed. 

Step 3. Set [ ] [ ](2) (1) (1) (1) (59, 70), (60, 74) (55, 75), (58, 76)X X Z Z= ∪ = ∅ ∪ = ∪
. 

Iteration 2. Step 1 (we use the strategy which selects the integer box in ( )kX with 
the maximum objective function value of the upper bound point). 

Since (60, 74) 32 520 32 240 (58, 76)f f= > =  select [ ] [ ], (59, 70), (60, 74)α β =  
and set [ ] [ ](2) (2) \ , (55, 75), (58, 76)X X α β= = . 

 
Fig. 3. Illustration for iteration 2 
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The bisection procedure applied to the equation [ ](59, 70) (1 )(60, 74) 0G λ λ+ − =  
finds out * 0.34123λ =  and (2) (59.65877, 72.63508).bx =  Then, 2 (59, 72)Fx =  and 

2 (60, 73)Ix = (see Fig. 3). 
Since 2( ) 31 840 31 880Ff x = <  then, opt (58, 74)x =  and opt 31 880.f =  

[ ] [ ]

[ ] [ ]{ } [ ] [ ]{ }
[ ] [ ]{ }

[ ]

(2) 2
2

ˆˆ ˆ, \ ,

(59, 70), (59, 74) \ (59, 70), (59, 72)

60, 59 70, 74 59, 59 73, 74

59, 59 73, 74

(59, 73), (59, 74)

FxΩ α β α   =   

=

= × ∪ ×

= ∅ ∪ ×

=

 

Set [ ] [ ](2) (2) (2)
1 2 (60, 70), (60, 72) (59, 73), (59, 74)Y Ω Ω= ∪ = ∪ . 

The point (60, 72)  is feasible and (60, 72) 32 160 31 880.f = >  Set opt (60, 72)x =  

and opt 32 160.f =  Remove the box [ ](60, 70), (60, 72) .  

Since opt(59, 74) 32 200 32 160 ,f f= > =  the box [ ](59, 73), (59, 74)  must be scan- 

ned. So, we do not remove it from (2).Y  Therefore, [ ](2) (59, 73), (59, 74)Z =  (coloured 
parts and bold lines are removed). 

Step 3. For the box [ ] (2)(55, 75), (58, 76) ,X∈  we have f (58, 76) = 32 240 > 32 160 
= fopt. Then this box must be explored. 

Set [ ] [ ](3) (2) (2) (55, 75), (58, 76) (59, 73), (59, 74)X X Z= ∪ = ∪ . 

Iteration 3. Step 1. Since (58, 76) (59, 74),f f>  select [ ] [ ], (55, 75), (58, 76)α β =  
and set [ ] [ ](3) (3) \ , (59, 73), (59, 74) .X X α β= =  

The bisection procedure applied to the equation G[λ(55, 75) + (1 – λ)(58, 76) = 0  
 finds out * 0.41162λ =  and (3)

bx  (56.76514,= 75.58838).  Figure 4 shows two points 
3 (56, 75)Fx =  and 3 (57, 76).Ix =  3

opt( ) 31 420 32 160Ff x f= < =  then, xopt = (60, 72), 
and opt 32 160.f =  
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Fig. 4. Illustration for iteration 3 

Step 2. Partition the set [ ](3) 3
1 , \ ,IxΩ α β β =    into two integer boxes. 

[ ] [ ]
[ ] [ ]{ } [ ] [ ]{ }

[ ] [ ]

(3)
1 (55, 75), (58, 76) \ (57, 76), (58, 76)

55, 56 75, 76 57, 58 75, 75

(55, 75), (56, 76) (57, 75), (58, 75)

Ω =

= × ∪ ×

= ∪

 

Since 3 ˆˆ ,Fx α β ∈   = [(55, 75), (56, 76)] set (3) (3)
1 1

ˆˆ\ ,Ω Ω α β =   = [(57, 75), (58, 75)]. 

[ ] [ ]
[ ] [ ]{ } [ ] [ ]{ }

[ ] [ ]
[ ] [ ]

(3) 3
2

ˆˆ ˆ, \ ,

(55, 75), (56, 76) \ (55, 75), (56, 75)

57, 56 75, 76 55, 56 76, 76

55, 76 56, 76

55, 76 56, 76

FxΩ α β α   =   

=

= × ∪ ×

= ∅ ∪ ×

= ×

 

Set [ ] [ ](3) (3) (3)
1 2 (57, 75), (58, 75) (55, 76), (56, 76)Y Ω Ω= ∪ = ∪ . 
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opt(58, 75) 32 060 32 160f f= < =  and opt(56, 76) 31 600 32 160 ,f f= < =  there-

fore, remove the two boxes [ ](57, 75), (58, 75)  and ( ) ( )55, 76 , 56, 76    from (3).Y

Consequently, (3)Z = ∅ . 

Step 3. For the box [ ] (3)(59, 73), (59, 74) ,X∈  we have  f (59, 74) = 32 220 > 32 160 
= fopt. This box must be explored. Then, [ ](4) (3) (3) (59, 73), (59, 74) .X X Z= ∪ =  

Iteration 4. Step 1. Select [ ],α β  = [(59, 73), (59, 74)] and set [ ](4) (4) \ , .X X α β= = ∅  
The bisection procedure applied to the equation [ ](59, 73) (1 )(59, 74) 0G λ λ+ − =  

finds out * 0.51724λ =  and (4) (59, 73.48276).bx =  The two points 4 (59, 73)Fx =  and 
4 (59, 74)Ix =  are given in Fig. 5. 4

opt( ) 32 020 32 160 ,Ff x f= < = then the point 
(60, 72)  is still the incumbent optimal solution. 

 
Fig. 5. Illustration for iteration 4 

Step 2. Partition the set [ ](4) 4
1 , \ ,IxΩ α β β =    into two integer boxes. 

[ ] [ ]
[ ] [ ]{ } [ ] [ ]{ }

[ ]
[ ]

(4)
1 (59, 73), (59, 74) \ (59, 74), (59, 74)

59, 58 73, 74 59, 59 73, 73

(59, 73), (59, 73)

(59, 73), (59, 73)

Ω =

= × ∪ ×

= ∅ ∪

=
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[ ]4 ˆˆ , (59, 73), (59, 73)Fx α β ∈ =  , set (4) (4)
1 1

ˆˆ\ ,Ω Ω α β = = ∅  . 

[ ] [ ]

(4) 4
2

ˆˆ ˆ, \ ,

(59, 73), (59, 73) \ (59, 73), (59, 73)

FxΩ α β α   =   

=

= ∅

 

(4) (4) (4)
1 2Y Ω Ω= ∪ = ∅ . Consequently, (4)Z = ∅  and (5) (4) (4)X X Z= ∪ = ∅ . The 

optimal solution of the problem is opt (60, 72)x =  with objective value opt 32 160f = . 

2. Numerical experience and comparison 

In order to investigate the potential of the discrete polyblock algorithm when ap-
plied to the considered chance-constrained problem, we implemented it and tested it on 
small problems similar to the mathematical model (4) where supplementary constraints 
are added. Our results are compared in terms of running time (CPU time) and the num-
ber of iterations (N/It) to those given by four solvers: LINGO, COUENNE, BONMIN, 
and BARON. The first three solvers are designed to solve general mixed-integer non-
linear problems, while the last solver is designed for nonconvex mixed-integer nonlinear 
ones. 

The first problem corresponds to the example given in this article. For problems 2 
and 3, we kept the same constraints as in problem 1 and modify the variation ranges of 
the decision variables. In problem 4, the variance and the intervals are modified. Three 
additional constraints are introduced in problem 4 to obtain problem 5 (see Table 1). 

After performing our tests presented in Tables 2 and 3, we can confirm that the 
polyblock method gives exactly the same solution as LINGO, COUENNE, BONMIN 
and BARON. Table 2 shows that polyblock algorithm is efficient, compared with 
LINGO and BONMIN in terms of the number of iterations required to reach the opti-
mum. The number of bisection calls (N/BC) is equal to the number of constraints 
multiplied by the number of iterations. The results in Table 3 show that polyblock 
algorithm is faster than LINGO but slower than COUENNE, BONMIN, and BARON. 
Much of the computational time was spent on locating the boundary point of the fea-
sible set. We have used two approaches for finding the boundary points: Newton’s 
technique and the Bolzano’s bisection procedure. The two approaches produced sim-
ilar results. 
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Table 1. Test problems 

Problem 1 

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.16 0.09 125 0
( ) 2 4380 0

( ) 5 435 0
55 60, 70 76

f x x x

g x x x x x
g x x x x x

g x x x
x x

= +

= + + + − ≤
= + − − ≤

= + − ≤
≤ ≤ ≤ ≤

 

Problem 2 

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.16 0.09 125 0
( ) 2 4380 0

( ) 5 435 0
3 77, 35 100

f x x x

g x x x x x
g x x x x x

g x x x
x x

= +

= + + + − ≤
= + − − ≤

= + − ≤
≤ ≤ ≤ ≤

 

Problem 3 

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.16 0.09 125 0
( ) 2 4380 0

( ) 5 435 0
1 100, 1 66

f x x x

g x x x x x
g x x x x x

g x x x
x x

= +

= + + + − ≤
= + − − ≤

= + − ≤
≤ ≤ ≤ ≤

 

Problem 4 

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.09 125 0

( ) 2 4380 0
( ) 5 435 0

1 100, 1 100

f x x x

g x x x x x

g x x x x x
g x x x

x x

= +

= + + + − ≤

= + − − ≤
= + − ≤

≤ ≤ ≤ ≤

 

Problem 5 

1 2

0 1 2 1 2

1 1 2 1 2

2 1 2

3 1 2 1 2
3

4 1
3

5 1 2

1 2

max ( ) 320 180
subject to

( ) 0.80 0.90 2.9 0.09 125 0
( ) 2 4380 0

( ) 5 435 0
( ) 5 4 4.5 320 0

( ) 3900 0
( ) ( 2) 650 0
1 100, 1 100

f x x x

g x x x x x
g x x x x x

g x x x
g x x x x x

g x x
g x x x

x x

= +

= + + + − ≤
= + − − ≤

= + − ≤
= − − − ≤

= − ≤

= − + − ≤
≤ ≤ ≤ ≤
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Table 2. Efficiency of various algorithms in terms of the number of iterations 

Problem Solution POLYBLOCK LINGO 
N/It 

COUENNE 
N/It 

BONMIN 
N/It 

BARON 
N/It N/It N/BC 

1 (60, 72) 4 12 41 8 6 1 
2 (77, 55) 5 15  49 16 24 1 
3 (100, 35) 6  18 95 11 44 1 
4 (100, 17) 5  15 55 3 28 1 
5 (1, 86) 3 18 54 1 22 1 

Table 3. Efficiency of various algorithms in terms of running time [s] 

Problem Solution POLYBOCK LINGO COUENNE BONMIN BARON 
1 (60, 72) 0.185 0.44 0.00 0.01 0.02 
2 (77, 55) 0.178 0.78 0.00  0.05 0.02 
3 (100, 35) 0.203 0.36 0.00 0.05 0.03 
4 (100, 17) 0.197 0.55 0.00 0.05 0.03 
5 (1, 86) 0.093 0.11 0.02 0.09 0.02 

 
In sum, to solve this particular problem, it is better to apply BARON or the specific 

algorithm polyblock that takes into account its special structure instead of solving it 
with solvers designed for general mixed integer nonlinear problems such as LINGO, 
COUENNE, and BONMIN. This allows us to reduce the number of iterations and/or to 
reach the optimal solution in a minimum of time. 

3. Conclusion 

In this study, a special stochastic integer program is considered. The problem is first 
reformulated into a deterministic monotonic integer problem introducing the chance-
constraint programming approach. The resulting monotonic program is solved by the 
polyblock method which exploits its special structure. This method does not require 
specific mathematical properties to be satisfied by the objectives or the constraints and 
treats the cutting plane gap which appear in solving integer programming problems. 
Indeed, no linearization or convexification of the nonlinear functions is needed, which 
distinguishes it from the other known methods. Its efficiency is due to the fact that one 
has just to solve simple equations rather than complex optimization problems in order 
to find the optimal solutions for the main problem. Even if this algorithm is not fast 
compared to some solvers, it can be used as a support for other research works. 
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