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This paper is centred on a binary classification problem in which it is desired to assign a new object 
with multivariate features to one of two distinct populations as based on historical sets of samples from 
two populations. A linear discriminant analysis framework has been proposed, called the minimised 
sum of deviations by proportion (MSDP) to model the binary classification problem. In the MSDP 
formulation, the sum of the proportion of exterior deviations is minimised subject to the group separa-
tion constraints, the normalisation constraint, the upper bound constraints on proportions of exterior 
deviations and the sign unrestriction vis-à-vis the non-negativity constraints. The two-phase method in 
linear programming is adopted as a solution technique to generate the discriminant function. The deci-
sion rule on group-membership prediction is constructed using the apparent error rate. The performance 
of the MSDP has been compared with some existing linear discriminant models using a previously 
published dataset on road casualties. The MSDP model was more promising and well suited for the 
imbalanced dataset on road casualties.  
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1. Introduction 

Discriminant analysis techniques involve the use of observations of known class 
membership to generate functions that separate these observations into the specified 
classes optimally in terms of a technique-dependent separation criterion [8, 17]. Discri-
minant analysis methods are used to study the difference between two or more groups 
as based on one or more attributes and to classify new observations into a group to which 
they are likely to belong [4]. Allocation of the new observations to a group is a predic-
tive aspect of discriminant analysis. This predictive aspect of discriminant analysis is 
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often referred to as classification analysis. The relevance of discriminant analysis in 
diverse and substantive areas, such as management science, artificial intelligence, crim-
inology, health care, etc., is well known in the literature [7, 18]. Several models have 
been developed for this purpose [1, 3, 17].  

This paper focuses on the classification problem for two groups. Instances, where 
the practical importance of the two-group problem has found application, include the 
development of an email program to classify emails as either legitimate or spam, the 
student admissions problem in which prospective students are grouped into those that 
are likely to succeed in a course of study or likely to fail, and the classification problem 
by police of burglaries into solvable and unsolvable cases. The two-group linear discri-
minant classifier is a function of the form ( , ) : {1 , 2},pc R →w  where pR  is the p-di-
mensional Euclidean space, w  is the discriminant coefficient, and c  is the cut-off 
value. The classifier is determined from a set of observations whose group membership 
is known and it partitions the p-dimensional Euclidean space pR  into two regions: 
a closed half-space { : },c≤x xw  and an open half-space { : }c>x xw  [4]. The set of ob-
servations used to generate the discriminant function is called the training sample. 

Abramovich and Pensky [2] consider the large p- small n-type of the multi-class 
classification problem. In this kind of problem, the dimensionality of the parameter 
space p by far exceeds the sample size n for objects with a large number of classes. The 
study implements feature selection by a thresholding technique and classification is car-
ried out based on the minimal Mahalanobis distance. The conditions on the effects of 
significant features and bounds for distances between classes required for successful 
feature selection and classification are derived. The findings reveal that having a larger 
number of classes could aid feature selection and improve classification accuracy.  

Gaynanova and Wang [8] consider a binary classification problem wherein n mutu-
ally independent observations 1 1( , ), ..., ( , )n nX Y X Y  from a random pair ( , )X Y  taking 
values in {1, 2}pR ×  were studied. The goal was to formulate a rule that could assign 
one of the two labels in {1, 2} to a new data point pX R∈  and to determine the subset 
of p variables that influences the rule. The work identifies the drawbacks of the linear 
discriminant analysis (LDA) and the quadratic discriminant analysis (QDA). For the 
LDA, it was said that the assumption of equal covariance matrices (i.e., 1 2Σ Σ= ) of the 
two groups is unlikely to be satisfied in practice and that the performance of the linear 
rule is suboptimal, while the QDA performs poorly when p is large as the estimation of 
the precision matrices 1

1Σ −  and 1
2Σ −  is extremely challenging when p n> . For large p, 

the task of assigning pX R∈  to one of the labels in {1, 2} is a high-dimensional binary 
classification problem. A solution to this problem using a variable selection technique 
to reduce the dimension of the original data is attempted and subsequently applied QDA 
on the reduced space. The performance of the method is measured by misclassification 
error rates and then compared with the existing methods. 
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This study is aimed at developing a linear programming discriminant analysis model 
that minimises the sum of the proportion of deviations from a reference hyperplane for 
the two-group discriminant problem. The study is structured on the linear programming 
(LP) discriminant analysis for the binary classification problem. Our choice for the lin-
ear programming approach is the sequel to its advantages [7], viz. LP models are both 
distribution-free (no assumptions on the distribution of the populations) and free from 
parametric assumption (no assumption on the covariance matrices), the objective of 
minimising exterior deviations are easily captured and LP models less sensitive to out-
liers since the models are based on linear metrics. The linear programming approach to 
discriminant analysis uses a given dataset to construct a discriminant function. This kind 
of problem has received considerable attention in the literature [12]. This paper concen-
trates on a distribution-free approach to discriminant analysis and represents the classi-
fication problem as a linear programming problem wherein the proportion of exterior 
deviation is minimised subject to certain constraints. An exterior deviation is a deviation 
from the hyperplane of a point improperly classified. 

In LP discriminant analysis, the assumption on the equality of the covariance ma-
trices of the group (as in Fisher’s method) is relaxed. This is because the discriminant 
classifier does not depend on the covariance of the population groups. The basic form 
of LP discriminant analysis models is  

minimise ( , )f cw  subject to ( ) c≤ >Xw 1 , ( ) c> ≤Yw 1 , ≠w 0  

where 1  is a column vector of 1’s that is conformable to the dimension of the product 
Xw or .Yw  In many instances, the constraint space is closed by introducing the relax-
ation equal or higher than ( ≥ ) in place of higher than ( > ).  

The use of LP models for discriminant analysis is not new [4]. The earlier LP meth-
ods were largely based on the objective of minimising exterior deviations, maximising 
internal deviations or both [20], or deriving a discriminant function using a mixed inte-
ger programming (MIP) approach [8, 15]. The deviation-based LP models may lead to 
unbounded solutions and the MIP models are characterised by excessive computational 
procedures. The MIP models utilise either the branch-and-bound algorithm or the cut-
ting plane algorithm, following an optimal solution obtained without the integral re-
quirements taken into consideration. The computational difficulties of the MIP are 
linked to the binary variable that must be associated with each training sample observa-
tion.  

The first two LP formulations in the literature are the minimise the maximum devi-
ation (MMD) model and the minimise the sum of deviations (MSD) model [19]. In the 
MMD model, an unbounded solution indicates a perfect separation of the two groups. 
The MSD is the most widely used objective in LP discriminant analysis [5]. Note that 
if the two groups are linearly separable, the MSD is zero and the discriminant function 
will be the separating hyperplane. Stam and Jones [19] report that the MMD approach 
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is found to have a classification power inferior to the MSD and that the MSD has 
a greater promise to minimise the rate of misclassification under data situations where 
the more traditional (statistical) approaches are less effective.  

Freed and Glover [7] provide a detailed study of the MMD and the MSD models 
using the normalisation 

10jw c+ =  

The obtained results establish the MSD model as a promising alternative to the con-
ventional linear discriminant techniques, e.g., Fisher’s method. 

Liu and Maloney [16] develop LP models to solve the two-group discriminant prob-
lem for two cases, where the groups are linearly separable and where they are non-
separable. Lam and Moy [13] develop a new LP model to solve the multigroup (more 
than two) classification problem. The model aggregates information contained in the 
multigroup problem to simultaneously determine the cut-off values for the different 
classification functions. Gochet et al. [11] introduce a novel problem formulation for 
the multigroup LP classification problem and show that the new formulation is capable 
of producing good classification results which can compete with both Fisher’s paramet-
ric method and the nonparametric k-nearest neighbourhood method. 

Our concern in this paper is the linear discriminant analysis of the LP kind. Among 
the LP discriminant methods, the MSD has been identified to be the most competing al-
ternative to the Fisher discriminant procedure [7, 14]. However, MSD has some limita-
tions. For the linear discriminant analysis of two groups, which is of interest in this paper, 
the basic MSD is biased to the dominant population group when the population sizes are 
not equal and may yield a solution which is unbounded even when the normalisation con-
straint in [7] is imposed. This paper is designed to fix these limitations of the MSD. The 
literature also suggests the extension of the basic MSD as a future research direction [7]. 
Rather than using the magnitude of exterior deviations, this paper proposes the use of the 
proportion of exterior deviations and then introduces the size of the individual group into 
the objective function of the basic MSD. The resulting model is the minimised sum of 
deviation by proportion (MSDP) model. The objective of the MSDP is to minimise the 
sum of the individual proportion of exterior deviation scaled up by the size of the other 
group. The modified objective function in this paper is due to the assertion by Glover [10].  

2. Method 

Consider a p-characteristic classification problem with two sets of samples X and Y of 
size 1N  and 2 ,N  representing two distinct populations 1 and 2, respectively. More pre-
cisely, X is an 1N p×  matrix whose ith row is the ith observation vector from group 1, 
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11, 2 , ... , ,i N=  and Y  is an 2N p×  matrix whose lth row is the lth observation vec-
tor from group 2, 21, 2 , ... , .l N=  Let ( )i=X x  be a data matrix for population 1, 

11, 2 , ... , ,i N= with ix  being a 1 p×  vector of the measurements of individual i from 
population 1, and ( )l=Y y  be a data matrix for population 2, 21, 2 , ... , ,l N= with ly  
being a 1 p×  vector of the measurements of individual l from population 2. To be more 
precise, 1 2( , , ... , )i i i ipx x x=x  and 1 2( , , ..., ),l l l lpy y y=y  where p is the number of 
characteristics (or features or variables) of interest. This study develops an LP model 
for discriminant analysis using the proportion of exterior deviations. Exterior deviations 
are undesirable. We define the proportion of exterior deviations as: 

0 if    is  misclassified
0 otherwise

i
ip

>
= 


x
 , 1, 2 ,...,i m=   

and  

0 if    is  misclassified
0 otherwise

l
lq

>
= 


y
, 1, 2,...,l n=  

where m and n are the size of the sample from population group 1 and the size of the 
sample from population group 2, respectively, used in the training sample, with 1m N≤  

and 2 ,n N≤  
1

0 1,
m

i
i

p
=

≤ ≤  
1

0 1
n

l
l

q
=

≤ ≤ . For a large data size, 1m N<  and 2.n N<  The 

remaining data sets 1N m−  and 2N n−  constitute the holdout sample.  
Moreover, population groups are usually characterised by an unbalanced dataset. 

A classification model developed from an unbalanced dataset may be unduly influenced 
by the observations in the dominant class. When there are fewer observations in a group, 
say G1, than in another group, say G2, the resultant discriminant function from the 
mathematical programming method could be biased in favour of the majority group, 
G2 [5]. The approach in this paper is to deal with unbalanced data by taking into account 
the consequences of their misclassification arising from exterior deviations. This is 
achieved by incorporating the size of each group directly into the objective function of 

the LP model by making m copies of 
1

n

l
l

q
=
  and n copies of 

1
.

m

i
i

p
=
  The resulting repre-

sentation does not enlarge the model formulation as there are no additional variables or 
constraints that have been created in dealing with the imbalance. We define the objec-
tive function for the LP model as  
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1 1

m n

i l
i l

z n p m q
= =

= +   

This objective function is in line with [10]. Let 1 2( , , ... , ),pw w w′ =w  2,p ≥  be 
an 1 p×  vector of the variable coefficients in the discriminant function. The linear dis-
criminant function ( , ) : {1, 2}pc R →w , defined by a cut-off value, c, and the coeffi-
cient vector, w, is to be generated to separate the set of observations into two groups. 
We modify the discriminant rule ,c≤Xw 1  ,c≥Yw 1  by introducing the deviation 
terms ipθ  and lqθ  to the right-hand side as follows: 

• for group 1 

i ic pθ≤ +x w , 11, 2 , ... ,i m N= ≤  

• for group 2 
l lc qθ≥ −y w , 21, 2 , ... ,l n N= ≤  

The additional terms ipθ  and lqθ  model the magnitude of the exterior deviations 
in the classification scheme. That is the magnitude by which the data points ix  and ly  
lie outside their targeted half-spaces. The value 0θ >  is a predetermined positive num-
ber. The introduction of θ  in the new LP discriminant model evades the trauma asso-
ciated with the problem of the non-separable dataset and unbounded solution in the 
MSD. Since ,≠w 0  the entries in 1 2( , , ..., )pw w w′ =w  can either be positive, negative 
or zero, but not all zero. The usual LP approach to deal with such variable coefficients 
is to treat them as variables that are unrestricted in sign. In this regard, the variable 
coefficients in the discriminant function ,kw  1, 2 , ... , ,k p=  is represented by a pair 
of non-negative variables as ,k k kw w w+ −= −  0 , 0.k kw w+ −≥ ≥  There are three possible 
cases for :kw  (i) 0kw >  if ,k kw w+ −> (ii) 0kw <  if ,k kw w+ −<  or (iii) 0kw =  if .k kw w+ −=  
Since the case =w 0  is undesirable, there is a need to introduce a normalisation con-
straint to prevent the solution without discriminating power. We constrain the absolute 
values kw  and c  to sum to a constant, that is 

1
( )

p

k k
k

w w c c s+ − + −

=

− + − =  

where s  is a non-zero constant. This normalisation constraint is in line with [6]. From 
the totality of the foregoing, we propose the following LP discriminant analysis model, 
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which we call the minimised sum of deviation by proportion (MSDP), to find a discri-
minant function that minimises the proportion of exterior deviations subject to certain 
constraints as follows: 

Minimise 

1 1

m n

i l
i l

z n p m q
= =

= +   

subject to: 
• the group separation constraints 

1
0,

p

k ik i
k

w x c pθ
=

− − ≤
1

0
p

k lk l
k

w y c qθ
=

− + ≥  

• the sign unrestricted expression 

,k k kw w w+ −= − c c c+ −= −  

,kw c  are unrestricted in sign,  
•  the normalisation constraint 

1
( )

p

k k
k

w w c c s+ − + −

=

− + − =  

s  is a non-zero constant 
 

•  the upper bound constraints on proportions of exterior deviations 

1
1,
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1
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l
l
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≤  

• the non-negativity constraint  

, , , , , 0i l k kp q w w c c+ − + − ≥ ,  

11, 2 , ... , ,i m N= ≤  21, 2 , ..., ,l n N= ≤  1, 2 , ... , .k p=   
This LP model contains (m + n + 3) functional constraints and (m + n + 2p + 2) 

decision variables. The number of decision variables is arrived at by taking the sum of 
the ( )m n+  proportion of exterior deviations, , ,i lp q and the 2( 1)p +  non-negative 
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variables , , , .k kw w c c+ − + −  Since the number of decision variables is more than the num-
ber of functional constraints, the LP model has an undetermined set of linear functional 
constrains. A basic solution to the LP model can be obtained by setting the following 
number of variables equal to zero  

( 2 2 ) ( 3) 2 1m n p m n p+ + + − + + = −  

and then solving the reduced system which contains ( 3)m n+ +  basic variables. The 
inclusion of θ in the constraints creates flexibility in the use of the LP model as θ, which 
is predetermined by the user, is the maximum exterior deviation that can be tolerated. It 
is worthy of note that the solution obtained for the cut-off value c, and the coefficient 
vector w, would not be unique. This is because there are no objective means to choose 
the non-zero constant s, the predetermined value θ, as well as the size of the training 
sample.  

The solution to the LP model is necessary to implement the model. The structure of 
the LP model can be solved using the big M method or the two-phase method. In either 
method, the constraints of the original problem are revised by introducing artificial var-
iables as needed to obtain an initial basic feasible solution for the artificial problem. 
This paper adopts the two-phase method. The reason for this is that the feasibility con-
ditions are quickly determined at the first phase without waiting until optimality is es-
tablished as in the case of the big M method. The LP model is indeed complex and 
requires excessive computational efforts. Consequently, a computer program is required 
to obtain a model solution. This paper utilises the MATLAB package as a computing 
device.  

Suppose ,∗w 0,∗ ≠w  and c∗  are the solution obtained by implementing the MSDP on 
a training sample. Then, the discriminant function is expressed as .c∗ ∗=xw  We propose 
the following group-membership discriminant rule. Let x  be an object with p-characteris-
tics that is to be classified into either group 1 or group 2. Then, we choose a subset of 
the training sample and compute the apparent error rate ξ. If 0ξ →  the object x  is 
classified as belonging to group 1 if c∗ ∗≤xw  and group 2 if .c∗ ∗>xw  If 1ξ → , the 
classification rule is reversed, that is, the object x is classified as belonging to group 2 
if c∗ ∗≤xw  and group 1 if .c∗ ∗>xw  If 0.5ξ → , determine a new discriminant classi-
fier by adjusting the predetermined value θ, and/or the cases of the training sample. 

In brief, the MSDP model proposed in this paper involves the following steps.  

Step 0. Construct the data matrix, , 
=  
 

X
Ω

Y
with ( )S Ω  as the corresponding set of 

sample labels of the cases in ,Ω  where X  is a matrix of measurements whose ith row 
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is the ith observation vector from group 1 and Y  is a matrix of measurements whose 
lth row is the lth observation vector from group 2.  

Step 1. Partition the data matrix ( )Ω  into samples: training sample and holdout 
sample. Set the size of the training sample, ,eT  so that ( )/e eH S T= Ω  is the correspond-
ing holdout sample. 

Step 2. Assume 
i ic pθ≤ +x w  for each i for group 1, 

l lc qθ≥ −y w  for each l for group 2. 
Step 3. Use the training sample to construct the MSDP discriminant function based 

on step 2 as follows:  
A. The representative sample of an approximate proportion of the group size con-

cerning eT  is selected from each population group by randomization without replace-
ment.  

B. Use eT  to construct a linear programming model (i.e., the MSDP). 
C. Revise the constraints of the MSDP by introducing artificial variables as needed 

to obtain an initial basic feasible solution for the artificial problem of the LP model. 
D. Choose a value for the allowable maximum exterior deviation. Then, apply the 

two-phase simplex method. 
E. If the solution is unbounded, repeat Step 3D otherwise go to Step 3F. 
F. Use the solution in Step 3D to construct the discriminant function. 
Step 4. Compute the apparent error rate from the discriminant function in Step 3. 
Step 5. If the apparent error rate is small then use the assumed rule in Step 2 to 

classify the holdout sample. Otherwise, reverse the classification rule 
Step 6. Classify the observations in ( )/e eH S T= Ω and compute the hit rate. 

3. Numerical illustration 

We use an unbalanced dataset in R software that describes road casualties monthly. 
The R dataset is provided as an example dataset by R, e.g., R i386 3.4.0 software. The 
data consist of 192 cases of time series data of monthly totals of road casualties before 
and after the introduction of seat belt law, with 169 cases in one class and 23 cases in 
the other class. Each observation consists of seven variables, according to the law in 
effect on a seat belt. The variables are car drivers killed, drivers killed or seriously in-
jured, front-seat passengers killed or seriously injured, rear-seat passengers killed or 
seriously injured, distance driven in kilometres, petrol price index, number of van (light 
goods vehicle) drivers and the law in effect. The dataset is accessed in R by 

>data(package=”datasets”) 
>Seatbelts 
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The data can be used to classify the casualty rates, according to whether a seat belt 
law is in effect for a month or not. The seat belt law makes the wearing of seat belts by 
front-seat occupants of cars and light goods vehicles compulsory. We use discriminant 
analysis to predict the law in effect using drivers killed, front, rear, kms, petrol price 
and van-killed as predictors. 

We perform discriminant analysis on the R data using approximately 20% of the 
cases in each group to form the development sample. The size of the development sam-
ple is thirty-nine, and this consists of the first thirty-four cases before the government 
intervention and the first five cases after the seatbelt law was in effect.  

We apply three discriminant methods: the MSD, the linear discriminant analysis in 
Minitab version 17 (Minitab LDA), and the MSDP. The MSD was implemented in 
MATLAB, and the results obtained were an optimal solution that is unbounded. This 
could not be used for discrimination.  

We obtain the coefficients and the constant values of the discriminant function for 
the Minitab LDA as shown in Table 1. For the holdout sample, we obtain a hit rate of 
88.24% with a false positive rate (1-specificity) of 100% for the Minitab LDA. The 
Minitab LDA could discriminate the training sample, but not the holdout sample.  

Table 1. Coefficients and constant values 
 of the Minitab LDA 

Parameter 0 1 
Constant –1255 –2117 
Drivers killed 1 1 
Drivers_1 0 0 
Front 0 –1 
Rear –1 –1 
Kms 0 0 
Petrol price 19 427 25 070 
Van killed –3 –8 

 
Applying the MSDP to the R dataset at θ  = 100, we obtain the following discrimi-

nant function: 

1 2 3 4 5

6 7

3.1540 0.1964 0.1841 0.5207 0.0001
152.8394 0.0963 150.64

x x x x x
x x

− − + −
− − =

 

This discriminant function produces a hit rate of 82.35% with a false positive rate 
of 55.56%. This false-positive rate may be attributed to the undue influence of the dom-
inant cases of no seatbelt law in effect. Among the three discriminant methods, the 
MSDP is preferred. This is because the Minitab LDA was insensitive to the period the 
law was in effect as the false positive rate was 100% for the holdout sample which 
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means it is extremely biased in favour of no government intervention. The results from 
the Minitab LDA on the holdout sample indicate that the seatbelt law does not affect at 
all road casualties. One may erroneously conclude that the Minitab LDA is superior to 
the MSDP because it has a hit rate of 88.24% which is the proportion of the cases of no 
seatbelt law in effect in the development sample. Since the Minitab LDA could assign 
all cases in the holdout sample to the group 0, it has limited practical value for the R 
dataset. To this end, the MSDP classifier is more appropriate for this classification prob-
lem with an imbalance dataset. 

4. Conclusion 

The MSDP, just like other distribution-free techniques, allows the sets of observa-
tions to adjudge themselves as based on the discriminant rule without forcing a distri-
bution on them. This model involves two stages: it obtains a set of characteristic weights 
via the two-phase method and decides on the decision rule for group-membership pre-
dictions using a subset of the training sample. This model has the advantage of circum-
venting unbounded solutions whenever they are encountered by adjusting the user-de-
fined maximum exterior deviation θ. The utility of our LP model is not in doubt as it is 
built upon minimising incorrect classification of observations arising from exterior de-
viations. The Minitab LDA, the MSD and the MSDP, were used to examine a dataset 
in R. The MSDP appeared more promising and well suited in dealing with the problem 
of imbalanced data, unlike the Minitab LDA which was less effective. This study con-
tributes to the literature by (i) developing an MSDP model that relies on proportion with 
a user-specified level for maximum tolerance of exterior deviation, (ii) showcasing the 
performance of the MSDP model for imbalanced datasets and, (iii) using apparent error 
rate as a basis for classification rule. Further comparison of the MSDP with other algo-
rithms based on linear separation is suggested for future research. 
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