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GENERATING A SET OF COMPROMISE SOLUTIONS  
OF A MULTI-OBJECTIVE LINEAR PROGRAMMING PROBLEM 

THROUGH GAME THEORY 

Most of real-life problems, including design, optimization, scheduling and control, etc., are in-
herently characterized by multiple conflicting objectives, and thus multi-objective linear program-
ming (MOLP) problems are frequently encountered in the literature. One of the biggest difficulties 
in solving MOLP problems lies in the trade-off among objectives. Since the optimal solution of one 
objective may lead other objective(s) to bad results, all objectives must be optimized simultaneously. 
Additionally, the obtained solution will not satisfy all the objectives in the same satisfaction degree. 
Thus, it will be useful to generate a set of compromise solutions in order to present it to the decision 
maker (DM). With this motivation, after determining a modified payoff matrix for MOLP, all possi-
ble ratios are formed between all rows. These ratio matrices are considered a two person zero-sum 
game and solved by linear programming (LP) approach. Taking into consideration the results of the 
related game, the original MOLP problem is converted to a single objective LP problem. Since there 
exist numerous ratio matrices, a set of compromise solutions is obtained for MOLP problem. Nu-
merical examples are used to demonstrate this approach.  
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1. Introduction 

A large number of real-life problems can be modelled basically by LP, and a single- 
-objective LP problem usually results in a single solution, called optimal solution. How-
ever, modelling real-life problems by LP is not realistic, because, it is increasingly dif-
ficult for people and institutions to interpret and judge the world around them in a one-
dimensional manner and to treat them as if they were bound to a single criterion. In this 
approach, multi-objective decision making has come to the point of helping DMs to 
make decisions when they face problems expressed by multiple, unequally weighted 
[A1]and incompatible objectives.  

Since there exist a lot of MOLP models arising in various industries, many ap-
proaches are developed to solve them. Das, Goswami and Alam focused on the solution 
procedure of the multiobjective transportation problem with cost coefficients of the ob-
jective functions and expressed the source and destination parameters as interval values [7]. 
Sabri and Beamon adopted multiobjective decision analysis to allow the use of a per-
formance measurement system which includes cost, customer service levels (fill rates), 
and flexibility (volume or delivery) [23]. A mixed-integer LP to designing a multi-echelon 
and multi-objective supply chain network via optimizing commodity transportation and 
distribution was proposed by Paksoy, Özceylan and Weber [18]. Suprajitno presented 
the MOLP problems with interval numbers as coefficients and values of their variables 
which are also in the form of intervals and solved by a modified simplex method [26]. 
Shao and Ehrgott utilized algorithms developed to compute the entire set of nondomi-
nated points of multi-objective linear programmes to solve linear multiplicative pro-
gramming problems [24]. Kasimbeyli et al. presented an analysis, characteristics and com-
parison of six commonly used scalarization methods in multiobjective optimization [11]. 
Cococcioni, Pappalardo and Sergeyev offered a new approach for solving lexicographic 
MOLP problems using a recently introduced computational methodology, allowing one 
to work numerically with infinities [6]. An LP-based algorithm was submitted for a class 
of optimization problems with a multi-linear objective function and affine constraints 
by Charkhgard, Savelsbergh and Talebian [5]. 

The Pareto set allows us to select the acceptable solution from a wide variety of 
options, which serves advantage to DM. With this motivation, in 1951, Koopmans first 
came up with the concept of Pareto efficient solution set, which effectively described 
the solution under the relationship of the partial order but not the total order [12]. Multi-
objective optimization methods try to obtain solutions that are as close as possible to 
the Pareto optimal front and at the same time uniformly distributed solutions. Athan and 
Papalambros considered generalized weighted criteria methods that retain the ad-
vantages of the linear method without suffering from the limitation that capturing Pareto 
optimal points in a non-convex attainable region [2]. Deb and Saxena suggested an evo-
lutionary multi-objective optimization procedure for solving large-objective (M) problems, 
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which degenerate to possess a lower-dimensional Pareto-optimal front (lower than M) [8]. 
Huang, Galuski and Bloebaum offered the multi-objective Pareto concurrent subspace op-
timization method in which each discipline has substantial control over its own objec-
tive function during the design process, while still ensuring responsibility for constraint 
satisfaction in coupled subspaces [10]. Marler and Arora explored the fundamental sig-
nificance of the weights in terms of preferences, the Pareto optimal set, and objective-
function values [15]. Giagkiozis and Fleming investigated the implications of using de-
composition-based methods over Pareto-based methods on algorithm convergence from 
a probabilistic point of view for multi-objective optimization [9].  

The basic idea to solve a MOLP problem is to determine a solution that represents 
an acceptable trade-off or compromise between objectives, or to determine a set of such 
solutions. The decision-maker is allowed to choose a favourable solution among the 
obtained solutions. Romero, Amador and Barco showed how multiobjective program-
ming, compromise programming, and filtering techniques can be used to tackle some 
problems found in agricultural planning [21]. Lahdelma, Miettinen and Salminen en-
hanced a method that uses achievement functions for charting subsets of reference 
points that would support a certain alternative to be the most preferred one [13]. Biswal 
and Acharya paid regard to a MOLP problem where some of the right-hand side param-
eters of the constraints are multi-choice in nature. According to them, the selection from 
the sets should be in such a manner so that the combination of choices for each set 
should provide the best compromise solution [4]. Ronald, Figueira and Smet dealt with 
project portfolio selection evaluated by multiple experts and modelled as a multi-objec-
tive combinatorial optimization problem solved by two procedures based on inverse 
optimization. They offered a compromise among the group of experts [22]. 

In game theory literature, there is a limited number of studies about how to obtain 
the optimal solution set when the system is satisfied with all the components. Belenson 
and Kapur proposed to develop a useful technique which is based on a two-person zero- 
-sum game with mixed strategies for solving linear programmes involving more than 
one objective function [3]. Rao presented graphical interpretations of the non-coopera-
tive and cooperative game theory approaches for a two-criteria optimization problem 
[19]. Rao and Freiheit developed a modification to the introduced game theory in which 
the two optimization steps are combined and with an algorithm for its implementation 
[20]. Sim and Kim discovered the evolutionarily stable strategy as a solution to multi 
-objective optimization problems using a coevolutionary algorithm based on evolution-
ary game theory [25]. Annamdas and Rao proposed particle swarm optimization with 
which coupled game theory based algorithms to solve multi-objective engineering op-
timization problems involving continuous, discrete and/or mixed design variables [1]. 
Meng, Ye and Xie presented the game description of the multiobjective optimization 
design problem and took the design objectives as different players [17]. Lee focused on 
the development of a multi-objective game theory model for balancing economic and 
environmental concerns in reservoir watershed management and for assistance in the 
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decision [14]. Matejas and Peric introduced a new iterative method based on the princi-
ples of game theory for solving MOLP problems with an arbitrary number of DMs [16]. 

In this paper, we present a solution procedure to a MOLP problem by using an ap-
proach based on the linear programming modelling of a game matrix. In [3], MOLP is 
solved by converting the problem to a two-person zero-sum game, by forming the tra-
ditional payoff matrix. Since it uses the normalization-based approach, it has the ability 
to generate only one game matrix and thus one solution for the original MOLP problem, 
whereas in our approach a modified payoff matrix is constructed by a feasible corner 
point and individual optima of the objectives. With the aim of obtaining more than one 
solution, a scaling-based approach is used instead of normalizing. Thus, all possible 
ratios are formed between all rows of the payoff matrix. These various ratio matrices 
are solved by traditional linear programming approach for a two-person zero-sum game. 
The objectives are weighted by the probabilistic results of the related game, and the 
original problem is converted to a single objective LP problem. Thus, a set of compro-
mise solutions is obtained for MOLP problem and so our method is able to present var-
ious solutions to DM. Then, the DM can choose the most appropriate solution for the 
objective or objectives using the satisfaction degrees considering his prioritizes, prefer-
ences and requirements.  

This paper is organized as follows: after introducing the MOLP problem and basic 
definitions in Section 2, our proposed approach is presented in Section 3. In the next 
section, numerical experiments are considered. The last section emphasizes our conclu-
sions. 

2. MOLP problem 

The mathematical model of the MOLP problem can be written as follows: 

 1 2max ( ), ( ), ..., ( )  kx S
Z x Z x Z x


 

where 

  , , ; 0nS x R Ax b x      and  1 2
1

( ) , , ...,
n

i i n ij j
j

Z x Z x x x c x


     

for 1, 2, ..., .i k  
Since a minimization problem can be converted to a maximization problem by tak-

ing its negative form, we assumed all the objectives are in maximization direction. 
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Definition 2.1. *x S is said to be a Pareto-optimal solution if and only if there does 
not exist another x S  such that    *

i iZ x Z x  for all 1, 2, ,i k   and *( ) ( )i iZ x Z x  

for at least one i. 

Definition 2.2. An optimal compromise solution of MOLP problem is a feasible 
solution x S  at which DM’s preferences value, taking into consideration various re-
spective objectives, is maximum. 

3. Our approach to MOLP problem 

In this paper, we intended to generate a set of compromise solutions in order to 
present it to the DM. With this motivation, firstly, a modified payoff matrix is deter-
mined by individual optima of the objectives and a feasible corner point of the corre-
sponding feasible region S.  

The individual optima of each objective are found by solving the MOLP problem 
as a single objective LP for each objective and ignoring all others as follows: 

 * max ( ), 1, 2, ...,i ix S
X Z x i k


   (1) 

A feasible corner point can be obtained in the following ways:  
Using (2), a new objective function can be formed by adding the normalized objec-

tive functions up or 

    
 1 *

1
max

k
i

k
i i i

Z x
Z x

Z X


   (2) 

Alternatively, a random nonzero feasible corner point can be determined by solving 
the original constraints with the zero objective function as well.  

The optimal solution of (2) over the feasible region s, which is denoted by *
1,kX  is 

determined by using 

 *
1 1max ( )k kx S

X Z x 
  (3) 

Thus, the modified payoff matrix is constructed as in Table 1. We note that if the 
modified payoff matrix has at least one negative entry, it must be converted to a matrix 
whose entries are all positive by adding consecutive integer of the absolute value of the 
smallest negative entry of the matrix. 
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Table 1. The modified payoff matrix 

 1Z  2Z   kZ  
*
1X   *

1 1Z X   *
2 1Z X    *

1kZ X  
*
2X   *

1 2Z X   *
2 2Z X    *

2kZ X  

    
*
kX   *

1 kZ X   *
2 kZ X    *

k kZ X  
*

1kX   *
1 1kZ X   *

2 1kZ X 
  *

1k kZ X 

 
For most of the MOLP problems that represent a real-life problem, there exist dis-

parities between the values of objectives. Also, the units of measurement are not com-
mon for each objective. Thus, the entries of the payoff matrix will have to be scaled to 
compensate for these discrepancies. In this context, row ratios are formed between all 
rows of the modified payoff matrix. A ratio of two objective function values represents 
the relative efficiency between the corresponding points in the nominator and denomi-
nator, respectively. This ratio matrix is presented in Table 2. 

Table 2. The ratio matrix 

. 1Z  2Z   kZ  

 * *
1 2R X X  1/2

1Z  1/2
2Z   1/2

kZ  

 * *
2 3R X X  2/3

1Z  2/3
2Z   2/3

kZ  

    

 * *
1k kR X X 

/( 1)
1
k kZ  /( 1)

2
k kZ   /( 1)k k

kZ 

 
A ratio of two objective function values represents the relative efficiency between the 

corresponding points in the nominator and denominator, respectively. Namely,  * *
r sR X X  

and    / * *r s
i i r i sZ Z X Z X  in Table 2 represent which points’ ratio is determined and cor-

responding relative efficiency values, respectively    , 1, 2, ..., , 2, ..., 1 .i r k s k    

Thus, the size of the payoff matrix is reduced to  k k  from   1k k  . It is obvious 
that the ratio matrix is dependent on the order of the rows, that is, different permutations 
yield different ratio matrices. 

In literature, MOLP problem is solved by converting it to a two-person zero-sum 
game [3]. A two-person zero-sum game is characterized by the strategies of each player 
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and the payoff matrix. Taking these relative efficiency values as the first player’s strat-
egies and the objective functions as the second player’s strategies, the ratio matrix is 
considered as a game matrix. 

These game matrices can be solved by the traditional linear programming approach 
as follows: 

  

1/2 1/2 1/2
1 1 2 2

2/3 2/3 2/3
1 1 2 2

/( 1) /( 1) /( 1)
1 1 2 2

1 2

1 2

min

1

, , , 0,1

m k

m k

k k k k k k
m k

m

m

q Z q Z q Z

q Z q Z q Z

q Z q Z q Z

q q q

q q q







  

   

   

   

   













  (4) 

where 1 2, , ..., mq q q denote the mixed strategy solutions of column player, i.e., objec-
tives of the MOLP, and v is the value of the game. 

For finding a Pareto-optimal solution by using mixed strategy solutions, the follow-
ing well-known theorem is presented: 

Theorem. If a point *x S is a Pareto-optimal solution, then there exists a vector 
* nR   such that *

1
1,

k

k
i




  * 0k   and *x  is the solution of the following equivalent 

LP problem [3]: 

*

1 1

ˆmax ( )
k n

k ij jx S i j
Z x c x


 

  

where  , , ; 0 .nS x R Ax b x       

In this paper, we obtained the vector * nR   as the result of (4). Thus, MOLP prob-
lem is converted to a single objective LP problem. 

By different permutations of the ratio matrix rows, it will be possible to have more 
than one ratio matrix. Thus, we will enable to generate various solutions to present the 
DM. Thus, the DM may choose any compromise solution from the set.  
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4. Numerical experiments 

Example 1. The following MOLP problem is considered [27]: 
1 1 2

2 1 2

1 2

1 2

1 2

1 2

1 2

max ( ) 2
max  ( ) 2

3 21
 3 27
4 3 45
3   30

, 0

Z x x
Z x x

x x
x x
x x
x x

x x

  
 

  
 
 
 


x
x

 

After obtaining individual optima of the objectives, a random nonzero feasible cor-
ner point is determined by solving the original constraints with the zero objective func-
tion. The modified payoff matrix is given in Table 3. 

Table 3. The modified payoff matrix of Example 1 

 1Z  2Z
 *

1 0, 7X  14 7 

 *
2 9, 3X  –3 21 

 *
3 10, 0X  –10 20 

 
The modified payoff matrix has negative entries. Since the smallest entry is -10, we 

should add 11 to all entries. The positive modified payoff matrix is given in Table 3. 

Table 3. The positive modified payoff matrix of Example 1 

 1Z 2Z
 *

1 0, 7X  25 18 

 *
2 9, 3X  8 32 

 *
3 10, 0X  1 31 

 
By using the values in Table 3, the first ratio matrix can be obtained as in Table 4. 

Table 4. The first ratio matrix of Example 1 

 1Z  2Z  

 * *
1 2R X X 1/2

1 3.125Z  1/2
2 0.562Z 

 * *
2 3R X X 2/3

1 8.000Z  2/3
2 1.032Z 
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In Table 4, 1/2
1 3.125Z   means that the objective function value at *

1X  is 3.125 times 
efficient relative to that at *

2X  for the first objective. The remaining ratio values may be 
interpreted similarly. By using the ratio matrix in Table 4, the following LP problem 
can be constructed for the solution of the related game: 

 

 

1 2

1 2

1 2

1 2

min

3.125 0.562

8 1.032

1

, 0,1

q q

q q

q q

q q







 

 

 



 (5) 

where 1q  and 2q  denote the mixed strategy solutions of column player, i.e., objectives. 
The optimal solution of (5) is    * *

1 2, 0,1 .q q   Finally, MOLP problem can be con-

verted to (6) which has only one objective: 

    
1

* *
1 1 2 2 1 2

ˆmax ( ) 2 2
x S

Z q x x q x x


    x  (6) 

where 1S  is the feasible region of Example 1. Since    * *
1 2, 0,1 ,q q   ˆ( )Z x  is equal to 

2( )Z x and the optimal solution of (6) is  *
2 9, 3 .X   

By constructing the all possible ratio matrices, the corresponding LP problems can 
be written for the related games. The obtained Pareto-optimal solutions and their objec-
tive values are presented in Table 5. 

Table 5. Compromise solution set of Example 1 

 1 2,x x  Z1 
Satisfaction 
degree [%] Z2 

Satisfaction 
degree [%]

(9, 3) –3 29.2 21 100
(6, 7) 8 75 19 90.5
(0, 7) 14 100 7 33.3

(5.03, 7.32) 7.32 81.7 6.91 82.8
 
As it is seen in Table 5, our approach generates more than one Pareto-optimal 

solutions different from Zimmermann’s [27] solution to offer the DM. Thus, DM may 
choose one of them by considering the economic conditions, market conditions, his own 
status, etc. 
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Example 2. Let us consider the following MOLP problem [16]: 
1 1 2 3

2 1 2 3

3 1 2 3

4 1 2 3

1 2

1 2 3

1 2 3

1 3

2 3

1 2 3

1 2

max ( ) 50 100 17.5  
max ( ) 50 50 100  
max ( ) 20 50 100  
max ( ) 25 75 12  
12 17 1400
3 9 8 1000
10 13 15 1750
6 16 1325
12 7 900
9.5 9.5 4 107

, ,

Z x x x
Z x x x
Z x x x
Z x x x

x x
x x x
x x x

x x
x x
x x x

x x

  

  

  

  

 
  

  

 

 

  

x
x
x
x

3 0x 

 

where  1 2 3, , .x x x x  
The modified payoff matrix of Example 2 is presented in Table 6. 

Table 6. The modified payoff matrix of Example 2 

 1Z  2Z  3Z  4Z  

 *
1 44.937, 50.633, 41.772 X  8041.139 8955.696 7607.595 5422.152 

 *
2 22.276, 31.566, 74.459X   5573.413 10137.987 9469.697 3817.839 

 *
3 0, 26.693, 82.813X   4118.490 9615.885 9615.885 2995.703 

 *
4 10.417, 75.000, 0X   8020.833 4270.833 3958.333 5885.417 

 *
5 45.221, 49.612, 43.523X   7983.866 9093.890 7737.266 5373.676 

 
We note that  *

5 45.221, 49.612, 43.523X  is obtained by solving the correspond-
ing linear programming problem to (2). By constructing all the possible ratio matrices, the 
corresponding LP problems can be written for the related games. The obtained Pareto-
optimal solutions and their objective values are presented in Table 7. Also, Table 8 gives 
the satisfaction degrees of the objectives. 

Table 7. Compromise solution set of Example 2 

 1 2 3, ,x x x  1Z  2Z  3Z  4Z  
(45.22, 49.61, 43.52) 7983.87 9093.89 7737.26 5373.68
(44.94, 50.63, 41.77) 8041.14 8955.70 7607.59 5422.15
(22.28, 31.57, 74.46) 5573.41 10137.99 9469.70 3817.84
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Table 8. Satisfaction degrees of the objectives in Example 2 

 1 2 3, ,x x x  1Z  2Z  3Z  4Z  
(45.22, 49.61, 43.52) 99.3 89.7 80.5 91.3
(44.94, 50.63, 41.77) 100 88.3 79.1 92.1
(22.28, 31.57, 74.46) 69.3 100 98.5 64.9

 
Tables 7 and 8 can be used so that the DM decides according to his own preferences. 

5. Conclusions 

Because of the problems related to one or more than one objective originate from 
several disciplines, using a single optimization technology is not sufficient to deal with 
real-life problems. Here, the trade-off among objectives can be interpreted as the biggest 
difficulties in solving MOLP problems. Because the obtained solution will not satisfy 
all the objectives in the same degree, it will be useful to generate various, but not many, 
solutions in order to present them to the DM. Indeed, if only one solution is obtained 
for MOLP problem, then the DM has no choice but to take this solution into considera-
tion. With this perceptiveness, we presented a game theory-based approach to generate 
a set of compromise solutions of the MOLP problem. In addition, the number of solu-
tions generated by our method will not be numerous, since the square ratio matrix of 
order k is permuted where k is the number of the objectives. The leading feature of our 
approach is the ability to offer more than one solution for the MOLP problem. Numer-
ical examples are used to illustrate the applicability of the approach. 
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