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A ONE-PASS HEURISTIC FOR NESTING PROBLEMS 

A two-dimensional cutting (packing) problem with items of irregular shape and rectangular sheets 
is studied. Three types of problems are considered: single-sheet problems without restrictions on the 
number of elements, single-sheet problems with restrictions on the number of elements, and cutting 
stock problems (restricted number of items and unrestricted number of sheets). The aim of the optimi-
zation is to maximize the total area of the elements cut from a single plate or to minimize the number 
of sheets used in cutting. A one-pass algorithm is proposed which uses the popular concept of a no-fit 
polygon (NFP). The decision on whether an item is cut from a sheet in a given step depends on the 
value of a fitting function. The fitting function depends on the change in the NFP of individual items. 
We test eight different criteria for the evaluation of partial solutions. On the basis of numerical experi-
ments, the algorithm that generates the best solution for each of the considered problem types is se-
lected. The calculation results for these algorithms are compared with results obtained by other authors. 

Keywords: cutting, packing, irregular shapes, nesting problem, one-pass algorithm 

1. Introduction 

We shall be considering the optimization problem of two-dimensional cutting 
(packing) for irregularly shaped items from a rectangular sheet. We assume that items 
can be represented as a set of oriented vertices (polygons). The aim of the optimization 
is to minimize the waste in the cutting process, equivalent to maximizing material utili-
zation. This problem is known in the literature as the irregular cutting (packing) problem 
or nesting problem [9]. 
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According to the typology proposed by Wäscher et al. [47], we consider here three 
types of two-dimensional cutting and packing problems: the single knapsack problem 
(SKP), single large object placement problem (SLOPP) and single stock size cutting 
stock problem (SSSCSP), where the large object is a rectangular sheet with fixed di-
mensions and the small items are polygons. 

Irregular cutting problems and equivalent problems occur in many practical appli-
cations, for example, in the clothing, footwear, furniture and metal industries. The cut-
ting material may be fabric, leather, paper, metal, polystyrene, etc. In different applica-
tions, depending on the specific task, we have to deal with different constraints and 
different criteria for evaluating solutions. It should be noted that in practical applications 
we often have the more general problem of determining how many sheets should be 
used to obtain all of the given pieces. 

In the literature, the problem of cutting rectangular items from a rectangular sheet is 
more often described. Although cutting and packing problems are NP-complete, exact al-
gorithms are very important here (e.g., [6, 14, 16, 20, 23, 27]). They can be particularly 
useful in the case of problems of small and medium sizes, as well as local optimization 
mechanisms. For more complex instances, various approximate algorithms are used. Many 
of the approximate methods are algorithms based on metaheuristics [3, 26, 28, 30, 32]. 

The irregular cutting problem is much less frequently considered. This is mainly 
due to the geometric complexity of cutting patterns. For this reason, there exist rather 
few exact algorithms. Exact methods are described, among others, in [15, 22, 31, 46]. 
The authors of these papers investigate the use of mixed integer programming (MIP) 
models for solving the nesting problem. However, as the authors of the second paper 
state, MIP techniques, though still not appropriate for solving the more complex nesting 
instances, can be useful to improve heuristic methods. Jones [29] uses non-linear pro-
gramming models (quadratic programming) and a circle representation of pieces to find 
an optimal solution for instances with two and three nonconvex polygons. For instances 
with four elements, he achieved the best known solution, but without proof of its opti-
mality. Alvarez-Valdes et al. [4] proposed new integer linear formulations and a branch 
and bound algorithm that is able to solve instances of up to 16 pieces to optimality. 

Because of the complexity of the nesting problem, both literature and practice are 
dominated by approximate methods. Various heuristic approaches are applied, ranging 
from simple heuristics [17, 24, 37, 39] to metaheuristic and hybrid algorithms [1, 7, 8, 
12, 19, 25, 35, 36, 48]. 

It should be noted that single stock size cutting stock problems or single bin size bin 
packing problems (in the typology proposed by Wäscher et al. [47]) with items of irreg-
ular shape are very rarely discussed in the literature. We may refer, for example, to the 
following works: [18, 43] with weakly heterogeneous pieces or [33, 34, 45] with 
strongly heterogeneous pieces. 

Most of the currently used methods are based on the concept of a no-fit polygon, 
introduced by Art [5] and developed, among others, by Adamowicz and Albano [2]. 
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This is a method of determining layouts of elements so that they do not overlap each 
other. Although the NFP technique seems the most promising, mention should also be 
made of other approaches: pixel/raster methods [38, 41], trigonometric methods [21, 40], 
Φ functions [11, 44] and circle representations [29, 42]. A detailed survey covering the 
core geometric methodologies is given in [9]. 

2. Description of the problem 

Let 1 2{ , , ..., }nZ P P P  be a set of two-dimensional elements that we have to pro-
duce during a cutting process. We assume that each item , ( 1, 2, ..., )iP i n  is a polygon 
whose shape is defined by a list of vertices. In addition, each element can be rotated by 
certain angles. The set of allowable rotations (in degrees) of each polygon is denoted by

1 2{ , , ..., },nO O O O  where 1 2{ , , ..., }i kO o o o  describes rotations of the element Pi. 
For example: 2 {0, 90,180, 270}O   states that element P2 can be rotated by any of the 
listed directed angles. In the solution there may be at most bi elements Pi. Since some 
elements from set Z can be the same (congruent), the number of different types of items 
is denoted by m. The elements are cut from two-dimensional sheets ( , )S H W  of rec-
tangular shape with height H and width W. Since the cutting and packing problems are 
equivalent, we shall use both concepts: cutting an element from a sheet, or placing an 
element on a plate. We call each possible way of cutting a sheet a cutting pattern, or 
layout. 

As in [18] we consider, according to the typology proposed by Wäscher et al. [47], 
the following three types of problems: 

 Single knapsack problem (KP) – cutting of a single rectangular sheet. Each ele-
ment Pi may occur in the solution at most once ( 1ib   for each 1, 2, ...,i n ). The ob-
jective is to maximize the ratio of the total area of elements arranged on the plate to the 
area of the plate (called here the filling rate). 

 Single large object placement problem (PP) – the only difference from the previ-
ous type of problem is that there are no constraints on the number of elements of the 
same type in the layout. Therefore, we can assume that it is a problem where the assort-
ment of small items is weakly heterogeneous. 

 Single stock size cutting stock problem (CSP) – we have an unlimited number of 
sheets and a limited number of elements. We cut a certain number of elements of type Pi 
so as to use as few sheets as possible. The assortment of small items is weakly hetero-
geneous. A problem of this type can be associated with the implementation of a specific 
manufacturing contract. 
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3. One-pass heuristic 

3.1. No-fit polygon 

As was mentioned above, the irregular cutting problem (nesting problem) is a much 
more complex task than cutting rectangular items from a rectangular sheet. In this case 
it is harder to ensure feasible cutting patterns, where elements do not overlap. In addi-
tion, we need to pack elements as close as possible to each other. A recent approach to 
meeting the above conditions is the no-fit polygon (NFP) technique. Details of the NFP 
algorithm can be found in [10, 13]. 

Let A and B be polygons, where the item A is fixed. Let polygon B move around the 
polygon A, in such a way that the two polygons are always in contact but never overlap. We 
choose a point (called the reference point) on the polygon B. Moving (orbiting) item B 
around A, the point marks out a closed path (polygon), which we will denote by NFP(A, B) 
(Fig. 1a). The polygon NFP(A, B) has the following properties: 

 if the reference point of B is inside NFP(A, B), then polygons A and B overlap, 
 if the reference point of B is on the boundary of NFP(A, B), then polygons A and B 

are touching; 
 if the reference point of B is outside NFP(A, B), then polygons A and B are sepa-

rated. 

  
Fig. 1. An example of: a) no-fit polygon, b) inner fit polygon 

of a fixed polygon A and an orbiting polygon B 

Therefore it is easy to check whether the polygons A and B overlap. In addition, 
because we want as dense packing as possible, it is appropriate to arrange items on the 
sheet so that they touch, i.e., the reference point of B should be positioned on the bound-
ary of NFP(A, B). 

Similarly, we can determine the inner fit polygon of two polygons A and B, denoted 
by IFP(A, B). This is a path (polygon) marked out by the reference point of a polygon B 
moving (orbiting) inside the (fixed) polygon A (Fig. 1b). In this case we also assume 

b) a) 
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that both polygons are touching. With IFP(A, B), we can easily check whether the pol-
ygon A contains the polygon B – the reference point of B should be positioned on the 
boundary of or inside IFP(A, B). 

The NFP of a partial packing State on the plate S and a polygon P will be calculated 
as the set difference of IFP(S, P) and the sum of NFPs of the elements Ai placed on the 
plate and the polygon P (Fig. 2): 

NFP( , ) IFP( , ) \ NFP( , )i
i

State P S P A P    

Fig. 2. NFP of a partial packing (State) 
and a polygon P 

 

3.2. Description of the algorithm 

One-pass heuristics, which use NFP to represent elements arranged on a plate, can 
be found in the literature [24, 39]. We propose a new algorithm in which NFPs are 
additionally used in the process of evaluating partial solutions by estimating the free 
space left after placing a given element on the plate. 

In this paper, we propose a one-pass algorithm. Starting with an empty plate, the 
algorithm places (or cuts) an element (polygon) onto (or from) the current state of the 
plate. There are no returns or changes in a partial solution, excluding placement of the 
next item. Packing ends when the items are exhausted, or when it is no longer possible 
to place any item on the plate. 

We will use the following notation: State – a plate with some elements packed (partial 
solution), NFP (State, Polygon) – the NFP of a partial solution State and an element Poly-
gon. The NFP can be a polygon (possibly empty) or a sum of disjoint polygons (see Fig. 2), 

currentState  – the current state of the plate; next currentState State Polygon   – the next 
state of the plate. An element Polygon has been packed at its optimal placing point 
(a vertex of its NFP), Area  – surface area, convexArea  – surface area of the convex hull, 
Elems(State) – the set of items that can be packed in a State, Verts( )P  – the vertices of 
a polygon P, Fit – the fitting function. 
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At each step of the algorithm, an element is placed depending on the value of the 
fitting (evaluation) function. The fitting function evaluates both an item and its place-
ment at the so-called placing point. The placing point of an element P can be any vertex 
of the polygon NFP( , ).State P  At each step of the algorithm, the element with the high-
est value of the fitting function for the pair (element P, placing point V) is cut. The 
considered fitting functions are based on the current and next state of the plate. 

Elems( ) Verts(NFP( , ))
( , ) max max Fit( , , )

P State V State P
P V P V State

 
  

The one-pass nature of the algorithm significantly shortens the packing time. This 
time depends linearly on the product of the number of elements placed on the plate and 
the average computation time of the fitting function. On the other hand, one-pass means 
that any “wrong” placement of an element will be reflected in the final result without 
the possibility of any adjustment. However, with suitable selection of the fitting func-
tion, the algorithm can give very good results not only in terms of execution time, but 
also in terms of filling rate. 

The algorithm described above can be used directly in problems of type KP and PP. 
In the CSP, we use the algorithm for any sheet of the cutting stock. The items are packed 
on the first plate, then on the second one, and so on until all elements are packed. In 
order to optimize the packing time, if on the next plate the same pattern of items can be 
packed (if the constraints allow it), then this pattern of elements is directly copied onto 
the next plate (without running the packing algorithm). 

3.3. Description of fitting functions 

Slightly similar fitting functions are considered in [39]. In that work, the fitting func-
tions depend on the different properties of the elements and their combinations being added, 
such as: waste, overlap and distance combined with min/max area, length and overlap of 
rectangular enclosures. However, in our work, the evaluation functions depend only on the 
surface areas of the corresponding NFPs and estimate the average area of the empty space 
left to be filled on the plate, thus they are simpler, faster, and easily interpretable. 

For the described algorithm, we construct several fitting functions. These functions 
evaluate both the item (polygon) to be packed and its placing point (vertex of NFP). 

Let us introduce the following notation: 

 sumAreaNFP( ) Area NFP( , )
P Elems

State State P


   

 maxAreaNFP( ) max Area NFP( , )
P Elems

State State P


  
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We considered eight fitting functions: 

Opt1. This fitting function depends on the area of the item Polygon to be packed 
and on the change in the sum of the NFP areas due to packing Polygon in a particular 
position (and hence moving to a new state) 

current next

Area( )Fit
sumAreaNFP( ) sumAreaNFP( )

Polygon
State State




 

 
Fig. 3. Reduction in the NFP area depending on how an item fits into the current packing state  

of the plate. The dark area indicates the decrease in the NFP area for two different packed items 

Figure 3 shows the change in NFP area for one element. If the item being packed is 
ill-fitted to the elements currently placed on the plate (Fig. 3, left), then the NFP area of 
any item decreases significantly (Fig. 3, left, dark area). If the element being packed is 
well-fitted to the current state of the plate (Fig. 3, right), then the decrease in the NFP 
area is smaller (Fig. 3, right, dark area). 

Opt2. This fitting function is similar to Opt1, but in the numerator we have the 
squared area of the element being packed. This fitting function prefers larger items. For 
two elements with the same NFP change, the element with greater area is packed. 
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 2

current next

Area( )
Fit

sumAreaNFP( ) sumAreaNFP( )
Polygon

State State



 

Opt1.5. This fitting function is similar to Opt1, but in the numerator we have the 
area of the convex hull of the element being packed. 

convex

current next

Area ( )Fit
sumAreaNFP( ) sumAreaNFP( )

Polygon
State State




 

Two items can be very similar in terms of the area available for subsequent items to 
be packed (similar NFPs relative to each other) while having very different areas. Using 
the area of the convex hull can reduce this difference. 

Opt2.5. This fitting function is similar to Opt1.5, but in the numerator we have the 
squared area of the convex hull of the element being packed. This fitting function prefers 
items with convex hulls of larger area. For two polygons with the same change in the 
NFP, the item with the greater convex hull is packed. 

 2
convex

current next

Area ( )
Fit

sumAreaNFP( ) sumAreaNFP( )
Polygon

State State



 

Opt3. This fitting function depends on the area of the item Polygon to be packed 
and on the change in the maximum NFP area due to packing Polygon (and hence moving 
to a new state) 

current next

Area( )Fit
maxAreaNFP( ) maxAreaNFP( )

Polygon
State State




 

Opt4. Similarly as in Opt3, but in the numerator, we have the square of the area. 
This fitting function prefers larger elements. 

 2

current next

Area( )
Fit

maxAreaNFP( ) maxAreaNFP( )
Polygon

State State



 

Opt3.5. Similarly as in Opt3, but in the numerator, we have the area of the convex 
hull. 

convex

current next

Area ( )Fit
maxAreaNFP( ) maxAreaNFP( )

Polygon
State State



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Opt4.5. Similarly as in Opt3.5, but in the numerator we have the squared area of 
the convex hull. This fitting function prefers items with larger convex hulls. 

 2
convex

current next

Area ( )
Fit

maxAreaNFP( ) maxAreaNFP( )
Polygon

State State



 

The algorithm (for all eight fitting functions) places items in a characteristic way. 
Since, for a rectangular sheet, the best fitting is realized in the corners or edges of the 
sheet, the elements are packed in a circular fashion. After all items are packed, an empty 
space is left in the centre of the plate. Figure 4 presents a partial solution for the instance 
DAGLI (Table 1) with the NFP of the next element to be packed. 

Fig. 4. An example partial solution
for the instance DAGLI  

4. Computational experiments 

4.1. Experimental setup 

The described algorithm was implemented in the C#.net 4.0 programming language and 
tested on an Intel Pentium Dual CPU 2.20 GHz, 2 GB RAM personal computer with the 
Microsoft Windows Vista operating system. For polygon operations, the Clipper library by 
Angus Johnson (http://www.angusj.com/delphi/clipper.php) was used with the following 
operations: set addition and multiplication, surface area function, and Minkowski sum 
functions. The NFP computations were performed using Minkowski sum procedures 
from that library. All the procedures of the algorithm and fitting functions were imple-
mented and executed in single-threaded fashion. 

There are few test instances, either in the literature or in online databases, which 
fulfil all of the conditions listed in Section 2. The most commonly available instances 
represent a slightly different type of problem, where only one dimension (e.g., the 
height) of the sheet is fixed. In this type of problem we minimize the width of the sheet. 
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In Wäscher et al. typology [47], a problem of this type is called a two-dimensional ir-
regular open dimension problem (ODP). 

As was mentioned in the Introduction, irregular two-dimensional cutting stock prob-
lems are rarely presented in the literature. In the present work, computational experiments 
were performed on well-known datasets with modifications as proposed by Del Valle et al. 
[18] and Song and Bennell [43]. In some papers [33–45], the results of computations are 
given for a slightly different class of problems: irregular single bin size bin packing prob-
lems. However, some of the features of the test instances proposed in those works (a strongly 
heterogeneous assortment of small items, small number of optimal cutting patterns for single 
plates, mostly with 100% occupied area) exclude our algorithm from competition with other 
methods – a one-pass heuristic cannot generate better results than multi-pass methods on 
such test data. Test datasets of the type proposed in [36] (for a single knapsack problem) 
have similar characteristics and will not be considered in this paper. 

Table 1. Characteristics of benchmark data instances 

Name Number of 
different pieces (m)

Total number
of pieces (n) Height Width Rotations 

(directed angle) 
FU 12 12 38 34 {0, 90, 180, 270} 
JACKOBS1 25 25 40 13 {0, 90, 180, 270} 
JACKOBS2 25 25 70 28.2 {0, 90, 180, 270} 
SHAPES0 4 43 40 63 {0} 
SHAPES1 4 43 40 59 {0, 180} 
SHAPES2 7 28 15 27.3 {0, 180} 
DIGHE1 16 16 100 138.14 {0} 
DIGHE2 10 10 100 134.05 {0} 
ALBANO 8 24 4900 10122.63 {0, 180} 
DAGLI 10 30 60 65.6 {0, 180} 
MAO 9 20 2550 2058.6 {0, 90, 180, 270} 
MARQUES 8 24 104 83.6 {0, 90, 180, 270} 
SHIRTS 8 99 40 63.13 {0, 180} 
SWIM 10 48 5752 6568 {0, 180} 
TROUSERS 17 64 79 245.75 {0, 180} 

 
Finally, we decided to carry out computational experiments on well-known bench-

mark problems (originally used in strip packing problems) from the European Working 
Group in Cutting and Packing (ESICUP) website (http://www.fe.up.pt/esicup). We per-
formed computational experiments on the following datasets. Three types of problems 
are considered. Modifications of the original instances are also presented: 

1. Single knapsack problem: 15 instances with modifications as proposed by del Valle 
et al. [18]. Table 1 contains basic information on the test instances. 

2. Single large object placement problem: the same instances as in 1 but with no 
constraints on the number of items of each type used in the cutting patterns. 
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3. Single stock size cutting stock problem: 
A. The same instances as in 1 (Table 1) with the constraints on the number of items 

as in [18] (generated randomly from [1, 100]). The data for the number of items in each 
dataset are available on the website: http://katmat.wilsig.tu.koszalin.pl/projects/p1/. 

B. The same instances as in 1 with modifications as proposed by Song and Bennell [43]. 
The width of the sheet is equal to its height (a square with the length of a side equal to 
the Height value from Table 1). The number of items of each type Pi is equal to 100. 
The total number of pieces for each instance is thus 100n. 

Note that the rotation notation (last column in Table 1) differs slightly from that 
used in other papers [18, 25]. We prefer to denote possible rotations of items as a set of 
directed angles. 

4.2. Results 

A number of preliminary experiments were carried out, the aim of which was to 
select the best fitting function for a given type of problem. Tables 2–5 show the results 
obtained by our algorithm with the eight fitting functions for all the test instances from 
the benchmark set and for all types of problems. For problems of type KP (Table 2) and 
PP (Table 3), the results of the computations are presented as the ratio of the total area 
of elements packed on the plate to the area of the plate (column Area) and the compu-
tation time in seconds spent solving an instance (column Time), excluding the time re-
quired for NFP computations. The best result among the fitting functions used in the 
algorithm is printed in bold. 

The data in Table 2 show that the algorithm Opt2.5 gives the best results for prob-
lems of type KP. Algorithm Opt2.5 finds layouts with the best filling rate for 12 out of 
the 15 test instances. Algorithm Opt4 is only slightly worse, with 11 best results. The 
worst among the fitting functions is Opt3 – it finds the best result for only 5 instances. 
Comparing the computation times of the algorithms, we see that they are similar. Only 
algorithm Opt4.5 seems to be slightly faster than the others. 

For problems of type PP (Table 3), the algorithm Opt3 gives the best results for total 
area (for 9 out of 15 instances). Computation times are now more varied. Algorithms 
Opt2, Opt2.5, Opt4 and Opt4.5 are notably faster than the other four. This is due to the 
fact that the fitting functions from the first group prefer larger elements. With no re-
striction on the number of elements, shorter computation times are produced. 

Table 4 presents results for the CSP, where we pack a fixed number of items on as 
small as possible a number of plates. The columns of the table show the number of plates 
used (# Plates) and computation time in seconds (Time). The best algorithm is Opt4 (for 
10 instances). It is also the fastest algorithm (in terms of both the number of instances 
with the shortest computation time, and the average execution time). 

 



I. KIERKOSZ, M. ŁUCZAK 48

Ta
bl

e 
2.

 C
om

pa
ris

on
 o

f a
lg

or
ith

m
s O

pt
1–

O
pt

4.
5 

fo
r p

ro
bl

em
s o

f t
yp

e 
K

P 

N
am

e 
O

pt
1 

O
pt

2 
O

pt
1.

5 
O

pt
2.

5 
O

pt
3 

O
pt

4 
O

pt
3.

5 
O

pt
4.

5 
A

re
a 

Ti
m

e [
s]

 
A

re
a 

Ti
m

e [
s]

 
A

re
a 

Ti
m

e [
s]

A
re

a 
Ti

m
e [

s]
A

re
a 

Ti
m

e [
s]

A
re

a 
Ti

m
e [

s]
 

A
re

a 
Ti

m
e [

s]
A

re
a 

Ti
m

e [
s]

FU
 

0.
83

82
 

1.
00

 
0.

83
82

 
1.

01
 

0.
83

82
0.

93
0.

83
82

1.
00

0.
68

65
1.

22
0.

83
82

 
1.

02
 

0.
68

65
1.

22
0.

83
82

1.
01

JA
CK

O
BS

1 
0.

75
38

 
18

.8
4 

0.
75

38
 

19
.6

0 
0.

75
38

22
.8

3
0.

75
38

21
.5

2
0.

71
54

15
.8

7
0.

75
38

 
20

.5
2 

0.
70

58
37

.2
9

0.
75

38
19

.7
1

JA
CK

O
BS

2 
0.

68
44

 
30

.5
2 

0.
68

44
 

24
.1

7 
0.

68
44

31
.9

1
0.

68
44

27
.5

0
0.

68
44

34
.0

0
0.

68
44

 
27

.2
6 

0.
68

44
34

.7
9

0.
68

44
29

.4
3

SH
A

PE
S0

 
0.

58
57

 
0.

68
 

0.
59

84
 

0.
6 

0.
57

62
0.

80
0.

60
95

0.
70

0.
60

16
0.

73
0.

55
87

 
0.

44
 

0.
54

76
0.

78
0.

60
16

0.
55

SH
A

PE
S1

 
0.

65
93

 
2.

83
 

0.
64

41
 

1.
73

 
0.

64
58

4.
73

0.
67

63
2.

71
0.

67
63

3.
30

0.
62

88
 

1.
83

 
0.

67
63

4.
26

0.
67

63
2.

82
SH

A
PE

S2
 

0.
73

75
 

2.
07

 
0.

76
43

 
1.

81
 

0.
71

79
2.

04
0.

76
68

1.
73

0.
73

75
1.

75
0.

77
17

 
1.

31
 

0.
75

21
1.

36
0.

73
75

1.
09

D
IG

H
E1

 
0.

72
40

 
0.

43
 

0.
72

40
 

0.
42

 
0.

72
40

0.
45

0.
72

40
0.

43
0.

65
61

0.
40

0.
72

40
 

0.
39

 
0.

72
40

0.
41

0.
66

67
0.

46
D

IG
H

E2
 

0.
74

60
 

0.
14

 
0.

70
42

 
0.

12
 

0.
74

60
0.

12
0.

70
42

0.
10

0.
74

60
0.

14
0.

74
60

 
0.

12
 

0.
74

60
0.

13
0.

62
85

0.
08

A
LB

A
N

O
 

0.
78

32
 

3.
87

 
0.

82
97

 
2.

52
 

0.
67

64
4.

99
0.

86
06

2.
76

0.
74

47
3.

61
0.

83
57

 
2.

15
 

0.
73

78
4.

95
0.

82
87

2.
74

D
A

G
LI

 
0.

77
31

 
3.

83
 

0.
77

31
 

3.
58

 
0.

77
31

4.
49

0.
77

31
3.

50
0.

65
37

4.
95

0.
77

31
 

3.
61

 
0.

77
31

3.
47

0.
77

31
3.

80
M

A
O

 
0.

71
60

 
19

.8
6 

0.
71

60
 

16
.2

6 
0.

71
60

16
.2

4
0.

71
60

15
.2

1
0.

71
60

17
.5

2
0.

71
60

 
18

.2
1 

0.
71

60
19

.2
3

0.
71

60
14

.2
7

M
A

RQ
U

ES
 

0.
77

11
 

11
.5

1 
0.

82
74

 
5.

23
 

0.
76

46
14

.2
1

0.
82

74
7.

31
0.

72
49

9.
09

0.
82

74
 

9.
75

 
0.

82
74

9.
40

0.
82

74
8.

31
SH

IR
TS

 
0.

79
58

 
44

.4
2 

0.
85

42
 

27
.7

8 
0.

80
25

39
.7

5
0.

84
82

23
.2

7
0.

80
25

20
.7

0
0.

85
54

 
23

.0
1 

0.
80

25
23

.9
4

0.
85

54
22

.9
1

SW
IM

 
0.

67
34

 
17

8.
77

 
0.

67
34

 
15

9.
94

 
0.

67
34

17
4.

57
0.

67
34

17
8.

85
0.

67
34

13
1.

99
0.

67
34

 
13

1.
03

 
0.

65
38

17
5.

37
0.

67
34

11
1.

28
TR

O
U

SE
RS

 0
.8

12
2 

10
5.

81
 

0.
88

63
 

69
.8

9 
0.

85
07

71
.9

7
0.

88
63

74
.5

4
0.

73
67

62
.9

6
0.

87
74

 
85

.5
4 

0.
78

66
89

.0
1

0.
87

74
84

.0
7



A one-pass heuristic for nesting problems 49

Ta
bl

e 
3.

 C
om

pa
ris

on
 o

f a
lg

or
ith

m
s O

pt
1–

O
pt

4.
5 

fo
r p

ro
bl

em
s o

f t
yp

e 
PP

 

N
am

e 
O

pt
1 

O
pt

2 
O

pt
1.

5 
O

pt
2.

5 
O

pt
3 

O
pt

4 
O

pt
3.

5 
O

pt
4.

5 

A
re

a 
Ti

m
e [

s]
 

A
re

a 
Ti

m
e [

s]
 

A
re

a 
Ti

m
e [

s]
A

re
a 

Ti
m

e [
s]

A
re

a 
Ti

m
e [

s]
A

re
a 

Ti
m

e [
s]

 
A

re
a 

Ti
m

e [
s]

A
re

a 
Ti

m
e [

s]
FU

 
0.

83
90

 
2.

58
 

0.
94

12
 

0.
81

 
0.

83
90

2.
57

0.
94

12
0.

80
0.

81
89

3.
86

0.
90

63
 

0.
78

 
0.

81
89

3.
90

0.
90

63
0.

79
JA

CK
O

BS
1 

0.
90

58
 

15
0.

36
 

0.
89

52
 

7.
44

 
0.

87
12

16
8.

27
0.

88
75

16
.7

4
0.

91
92

19
3.

07
0.

89
04

 
9.

42
 

0.
88

08
75

.9
5

0.
88

08
19

.4
7

JA
CK

O
BS

2 
0.

84
09

 
87

.0
2 

0.
83

08
 

8.
98

 
0.

86
93

19
2.

53
0.

81
86

9.
04

0.
83

54
77

.2
9

0.
83

08
 

8.
59

 
0.

81
41

11
1.

31
0.

81
86

8.
86

SH
A

PE
S0

 
0.

69
21

 
1.

19
 

0.
73

97
 

0.
32

 
0.

62
86

1.
31

0.
55

71
0.

66
0.

78
10

0.
74

0.
73

17
 

0.
33

 
0.

65
71

1.
42

0.
55

40
0.

61
SH

A
PE

S1
 

0.
69

32
 

3.
59

 
0.

74
75

 
0.

78
 

0.
65

59
6.

90
0.

67
97

2.
94

0.
73

73
3.

37
0.

75
59

 
0.

78
 

0.
65

93
6.

16
0.

64
24

2.
68

SH
A

PE
S2

 
0.

87
91

 
6.

18
 

0.
79

00
 

1.
76

 
0.

69
96

3.
46

0.
60

93
2.

08
0.

88
64

5.
25

0.
81

32
 

1.
59

 
0.

65
57

2.
13

0.
58

73
1.

78
D

IG
H

E1
 

0.
76

69
 

1.
87

 
0.

72
49

 
0.

35
 

0.
76

69
1.

85
0.

77
10

0.
41

0.
79

91
1.

52
0.

74
90

 
0.

50
 

0.
75

65
1.

54
0.

73
33

0.
43

D
IG

H
E2

 
0.

78
40

 
0.

24
 

0.
81

88
 

0.
12

 
0.

78
40

0.
25

0.
81

88
0.

10
0.

76
99

0.
26

0.
72

92
 

0.
08

 
0.

76
99

0.
27

0.
72

92
0.

09
A

LB
A

N
O

 
0.

86
35

 
12

.6
6 

0.
83

60
 

2.
52

 
0.

83
04

16
.1

8
0.

84
74

2.
65

0.
88

22
6.

15
0.

83
31

 
3.

14
 

0.
78

58
44

.7
4

0.
83

31
3.

19
D

A
G

LI
 

0.
84

65
 

13
.7

9 
0.

86
33

 
2.

92
 

0.
78

72
31

.1
9

0.
85

69
3.

50
0.

89
47

4.
75

0.
86

15
 

2.
29

 
0.

86
37

11
.9

6
0.

84
56

2.
30

M
A

O
 

0.
91

97
 

83
0.

77
 

0.
87

37
 

19
.4

3 
0.

90
70

70
0.

98
0.

86
47

19
.1

0
0.

91
89

74
.7

9
0.

86
87

 
10

.9
3 

0.
90

84
64

.5
2

0.
87

46
11

.1
3

M
A

RQ
U

ES
 

0.
88

21
 

39
.4

0 
0.

83
41

 
4.

12
 

0.
85

38
43

.5
6

0.
83

57
4.

72
0.

87
02

22
.8

3
0.

84
32

 
7.

16
 

0.
78

03
15

1.
52

0.
84

32
7.

61
SH

IR
TS

 
0.

95
12

 
32

3.
30

 
0.

84
79

 
10

.8
7 

0.
94

37
31

9.
72

0.
84

63
10

.5
0

0.
97

06
37

.9
3

0.
86

77
 

11
.4

5 
0.

90
69

63
.8

6
0.

86
61

11
.2

9
SW

IM
 

0.
78

28
 

49
7.

17
 

0.
76

43
 

21
1.

32
 

0.
73

98
38

6.
52

0.
68

69
13

0.
39

0.
80

81
53

0.
50

0.
80

25
 

18
1.

06
 

0.
72

09
19

9.
10

0.
65

63
63

.6
4

TR
O

U
SE

RS
 0

.9
30

2 
10

20
.0

1 
0.

90
89

 
23

.7
5 

0.
93

40
79

5.
21

0.
90

89
23

.4
1

0.
93

67
40

8.
35

0.
91

22
 

63
.6

3 
0.

93
00

27
5.

48
0.

91
22

64
.2

1



I. KIERKOSZ, M. ŁUCZAK 50

Ta
bl

e 
4.

 C
om

pa
ris

on
 o

f a
lg

or
ith

m
s O

pt
1–

O
pt

4.
5 

fo
r p

ro
bl

em
s o

f t
yp

e 
C

SP
 (d

at
as

et
 3

A
) 

N
am

e 
O

pt
1 

O
pt

2 
O

pt
1.

5
O

pt
2.

5
O

pt
3

O
pt

4 
O

pt
3.

5
O

pt
4.

5
# 

Pl
ate

s 
Ti

m
e [

s] 
# 

Pl
ate

s T
im

e [
s] 

# 
Pl

ate
s

Ti
m

e [
s]

# 
Pl

ate
s

Ti
m

e [
s]

#
Pl

ate
sT

im
e [

s]
# 

Pl
ate

s 
Ti

m
e [

s] 
# 

Pl
ate

s
Ti

m
e [

s]
# 

Pl
ate

sT
im

e [
s]

FU
 

70
 

15
.5

5 
67

 
19

.3
5 

70
15

.6
6

67
19

.3
2

73
17

.0
9

67
 

14
.4

8 
73

17
.1

1
67

14
.5

7
JA

CK
O

BS
1 

50
 

83
2.

77
 

47
 

54
1.

23
 

48
82

6.
70

46
37

3.
54

49
67

5.
66

46
 

41
4.

79
 

47
66

1.
44

47
32

7.
93

JA
CK

O
BS

2 
39

 
84

6.
00

 
39

 
79

4.
72

 
39

12
05

.5
3

38
 

83
3.

24
38

 
80

8.
54

38
 

62
4.

44
 

39
10

10
.5

0
38

 
85

9.
40

SH
A

PE
S0

 
51

 
3.

41
 

51
 

3.
41

 
51

3.
64

49
5.

09
50

6.
27

51
 

4.
24

 
52

3.
43

50
4.

02
SH

A
PE

S1
 

48
 

11
.3

4 
47

 
17

.4
5 

49
19

.8
4

47
14

.2
2

47
18

.0
5

48
 

13
.7

9 
48

18
.8

4
49

11
.9

0
SH

A
PE

S2
 

67
 

21
.5

6 
65

 
14

.9
3 

68
14

.0
6

66
14

.0
4

67
24

.1
8

64
 

11
.6

1 
67

18
.1

3
65

11
.0

5
D

IG
H

E1
 

58
 

17
.7

9 
48

 
9.

50
 

51
9.

97
46

12
.5

5
37

11
.7

0
47

 
8.

75
 

49
10

.7
0

47
9.

33
D

IG
H

E2
 

40
 

2.
01

 
40

 
1.

70
 

40
2.

25
40

1.
60

40
1.

46
43

 
1.

41
 

40
1.

37
42

1.
11

A
LB

A
N

O
 

86
 

36
.9

1 
78

 
49

.2
7 

86
82

.4
9

78
 

20
.9

7
84

33
.8

5
78

 
38

.1
4 

82
79

.3
9

78
 

21
.7

7
D

A
G

LI
 

54
 

86
.5

0 
51

 
48

.4
9 

56
13

4.
83

51
50

.9
7

53
57

.3
2

50
 

42
.3

4 
55

91
.2

2
50

50
.9

8
M

A
O

 
43

 
12

54
.3

5 
41

 
14

0.
52

 
43

11
03

.0
3

41
12

5.
85

39
72

2.
02

41
 

10
9.

59
 

42
26

2.
67

41
15

4.
55

M
A

RQ
U

ES
 

52
 

18
0.

34
 

50
 

18
1.

63
 

54
24

0.
97

57
11

2.
63

53
12

6.
19

49
 

13
7.

97
 

52
39

4.
46

50
16

6.
90

SH
IR

TS
 

47
 

12
10

.8
5 

43
 

25
6.

72
 

46
10

79
.1

6
43

25
0.

47
46

49
8.

70
42

 
19

8.
24

 
45

38
2.

00
42

19
2.

98
SW

IM
 

50
 

22
64

.9
8 

48
 

20
23

.8
5 

50
25

36
.1

1
47

19
96

.7
1

50
28

61
.2

7
47

 
15

54
.4

7 
49

19
27

.2
1

47
17

29
.8

2
TR

O
U

SE
RS

 
53

 
41

11
.8

2 
47

 
20

18
.6

6 
52

45
58

.9
1

47
 

21
07

.1
4

51
23

80
.7

3
47

 
14

40
.2

9 
50

28
47

.1
5

47
 

14
59

.4
1



A one-pass heuristic for nesting problems 51

Ta
bl

e 
5.

 C
om

pa
ris

on
 o

f a
lg

or
ith

m
s O

pt
1–

O
pt

4.
5 

fo
r p

ro
bl

em
s o

f t
yp

e 
C

SP
 (d

at
as

et
 3

B 

N
am

e 
O

pt
1 

O
pt

2 
O

pt
1.

5
O

pt
2.

5
O

pt
3

O
pt

4 
O

pt
3.

5
O

pt
4.

5

# 
Pl

ate
s 

Ti
m [s]

 e 
# 

Pl
ate

s 
Ti

m [s]
 e 

# 
Pl

ate
s

Ti
m [s]

e
# 

Pl
ate

s
Ti

m [s]
e

# 
Pl

ate
s

T [s]im
e

# 
Pl

ate
s T

im
e [

s] 
# 

Pl
ate

s
Ti

m [s]
e

# 
Pl

ate
s

Ti
m [s]

e

FU
 

95
 

23
.1

7 
88

 
24

.9
9 

95
23

.0
3

88
25

.2
0

92
25

.5
5

86
 

18
.2

0 
92

25
.4

1
86

17
.7

8
JA

CK
O

BS
1 

30
 

71
24

.8
8 

29
 

81
74

.8
1 

30
13

54
1.

36
28

 
73

79
.8

9
30

81
40

.6
5

29
 

63
59

.7
1 

29
76

22
.9

3
29

76
37

.5
6

JA
CK

O
BS

2 
34

 
11

44
5.

07
 

34
 

10
36

3.
43

 
34

14
86

3.
52

33
83

21
.2

5
34

56
80

.3
6

33
 

57
08

.0
1 

34
56

92
.6

1
33

60
57

.0
3

SH
A

PE
S0

 
19

3 
2.

59
 

16
8 

3.
15

 
19

1
1.

54
16

9
2.

80
18

8
3.

57
17

1 
3.

22
 

18
2

1.
96

16
9

2.
38

SH
A

PE
S1

 
16

1 
5.

74
 

15
7 

8.
54

 
16

6
4.

34
15

8
6.

51
15

8
4.

83
15

9 
7.

42
 

16
8

8.
26

15
9

6.
72

SH
A

PE
S2

 
20

7 
5.

95
 

19
4 

6.
58

 
21

3
5.

53
19

1
3.

92
20

5
7.

14
19

3 
4.

55
 

21
0

6.
16

19
6

4.
62

D
IG

H
E1

 
15

6 
5.

81
 

13
8 

7.
28

 
14

5
5.

11
14

0
4.

20
14

4
5.

88
14

4 
4.

34
 

14
8

6.
30

14
2

5.
39

D
IG

H
E2

 
13

5 
0.

98
 

13
9 

0.
84

 
13

5 
0.

98
14

4
1.

05
14

8
1.

33
13

6 
1.

12
 

13
9

1.
26

14
7

1.
12

A
LB

A
N

O
 

23
3 

5.
88

 
24

0 
5.

74
 

22
7

7.
07

22
0

4.
13

22
6

4.
97

21
7 

3.
57

 
22

7
6.

72
22

3
2.

03
D

A
G

LI
 

10
7 

73
.5

0 
10

0 
54

.6
0 

10
8

96
.8

1
10

0
51

.8
7

85
41

.1
6

10
0 

74
.8

3 
10

8
61

.1
8

10
1

68
.3

9
M

A
O

 
75

 
27

48
.9

0 
71

 
23

3.
10

 
74

26
61

.2
6

72
17

7.
17

76
12

22
.0

6
70

 
20

6.
29

 
74

43
7.

99
70

 
18

1.
86

M
A

RQ
U

ES
 

82
 

32
4.

87
 

76
 

31
5.

49
 

86
65

9.
26

76
24

7.
24

81
24

5.
42

77
 

24
0.

03
 

82
60

1.
44

77
16

9.
96

SH
IR

TS
 

17
5 

39
2.

14
 

16
0 

10
0.

10
 

17
4

32
0.

04
15

9
11

3.
68

17
2

22
4.

84
15

8 
89

.0
4 

17
1

13
9.

30
15

8
77

.0
0

SW
IM

 
11

5 
18

27
.7

0 
10

8 
13

75
.0

8 
11

1
12

80
.7

2
10

7 
13

57
.5

1
11

4
19

06
.1

7
10

8 
10

27
.4

6 
11

1
11

37
.9

9
10

7 
10

95
.7

8
TR

O
U

SE
RS

 
38

8 
24

3.
67

 
32

7 
62

.7
2 

22
7

14
5.

88
32

7
63

.5
6

38
5

37
4.

22
34

3 
56

.0
7 

34
4

23
4.

64
34

3
56

.1
4

PO
LY

 5
B 

15
7 

15
46

0.
41

 
15

7 
10

63
2.

30
 

15
7

15
21

1.
28

15
5

11
12

9.
09

15
4

13
23

4.
76

15
6 

99
14

.3
1 

15
5

12
65

6.
35

15
5

95
63

.3
3



 I. KIERKOSZ, M. ŁUCZAK 52

Table 5 presents results of computations for algorithms Opt1–Opt4.5 for problems 
of type CSP with the constraints proposed by Song and Bennell [43] (data instances 
3B). For completeness, we performed calculations for all the instances from Table 1 (in 
the paper), and also for those not considered by Song and Bennell [43]. The columns of 
the table show the number of plates used (# Plates) and computation time in seconds 
(Time). The best algorithm is Opt2.5 (for 6 instances). 

In Tables 6–9 we compare our algorithms with the algorithms used by Del Valle et al. 
[18] for all the types of problems. For problems of type KP (Table 7) and PP (Table 8), 
the results of the computations are presented as the ratio of the total area of elements 
packed on the plate to the area of the plate (column Area) and the computation time in 
seconds spent solving an instance (column Time), excluding the time required for NFP 
computations. 

Table 9 presents results for the CSP, where we pack a fixed number of items on as 
small as possible a number of plates. The columns of the table show the number of plates 
used (# Plates) and computation time in seconds (Time). The best result among the fit-
ting functions used in the algorithm is printed in bold. We should note the differences 
in speed between implementations and computers. The algorithms from [18] were im-
plemented in C++ and performed on a PC with Intel Core 2 Quad CPU 2.4 GHz. Our 
software was written in C# .net 4.0 and computed on a PC with Intel Pentium Dual CPU 
2.2 GHz. The processor clock speeds are similar, but it must be noted that the same code 
implemented in C++ is usually twice as fast as when implemented in C# .net. Therefore 
we can assume, as an approximation, that our computational platform is two times 
slower than the test platform from Del Valle et al. [18]. 

Table 6. Time [s] required for NFP computations 

Name Del Valle et al. [18] Opt 
[s]

FU 0.26 0.50
JACKOBS1 59.49 1.94
JACKOBS2 53.80 1.91
SHAPES0 51.32 0.02
SHAPES1 202.56 0.03
SHAPES2 17.90 0.07
DIGHE1 0.12 0.10
DIGHE2 0.15 0.07
ALBANO 14.40 0.19
DAGLI 26.16 0.17
MAO 102.91 1.52
MARQUES 57.50 0.43
SHIRTS 208.49 0.11
SWIM 1088.21 2.86
TROUSERS 48.22 0.38
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In Table 6, the computation times of NFPs for all the pairs of item types in the test 
instance are compared. We see that computations of NFPs in our algorithm are mostly 
much shorter (by as much as two orders of magnitude) than in the algorithm used by 
Del Valle et al. [18]. 

Table 7 presents a comparison of the GRASP algorithm used by Del Valle et al. [18] 
and the algorithm Opt2.5 which is the best among the tested fitting functions for prob-
lems of type KP. Opt2.5 is worse than GRASP for only one instance (out of 15). Com-
putation times are mostly much shorter. We can also see that the algorithm Opt2.5 finds 
more optimal solutions, i.e., it places all the items to be packed on the plate. In Table 7, 
optimal solutions are printed in bold in the Quantity of items columns. 

Table 7. Comparison of the performance of algorithms for problems of type KP 

Name 
Del Valle et al. [18] GRASP Opt2.5

Area Quantity
of items Time [s] Area Quantity

of items Time [s] 

FU 0.8382 12 21.79 0.8382 12 1.00 
JACKOBS1 0.7538 25 8.30 0.7538 25 21.52 
JACKOBS2 0.6844 25 565.71 0.6844 25 27.50 
SHAPES0 0.6016 41 1552.46 0.6095 40 0.70 
SHAPES1 0.6424 41 3891.60 0.6763 43 2.71 
SHAPES2 0.7289 26 1048.12 0.7668 26 1.73 
DIGHE1 0.7240 16 10.68 0.7240 16 0.43 
DIGHE2 0.7460 10 0.07 0.7042 9 0.10 
ALBANO 0.8038 23 961.59 0.8606 24 2.76 
DAGLI 0.7586 29 1106.40 0.7731 30 3.50 
MAO 0.7160 20 120.42 0.7160 20 15.21 
MARQUES 0.8274 24 217.77 0.8274 24 7.31 
SHIRTS 0.7702 96 14317.13 0.8482 93 23.27 
SWIM 0.6427 46 39781.43 0.6734 48 178.85 
TROUSERS 0.7866 62 5796.59 0.8863 64 74.54 

 
Figure 5 shows some patterns for cutting found by the method Opt2.5 for the KP. 

For these instances, the algorithm Opt2.5 found optimal solutions, while the GRASP 
algorithm did not. We can see that for a few layouts, not only are all the items placed 
on the sheet, but some free space also remains on the sheet. For all the tested algorithms, 
it is characteristic that the free space is located in the centre of the plate. 

Table 8 presents a comparison of the algorithm Solve2KP used by Del Valle et al. [18] 
and the algorithm Opt3, which is the best among the tested methods for problems of type PP. 

Overall, Opt3 is worse than Solve2KP. This is due to the fact that Solve2KP is a rec-
tangular-oriented algorithm. For instances without restrictions on the number of items, 
Solve2KP uses rectangular pieces to get the best result. If there are no rectangular items 
in an instance, Solve2KP does not find similarly good solutions. In this case, the algo-
rithm Opt3 is better, as it is specially tuned to solve problems with irregular shapes. The 
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execution times of Opt3 are mostly much shorter than those of Solve2KP. Examples of 
solutions for problems of type PP are shown in Fig. 6. For these instances, Opt3 is better 
than Solve2KP. 

Table 8. Comparison of performance of the algorithms  
Solve2KP and Opt3 for problems of type PP 

Name Del Valle et al. [18] Solve2KP (av.) Opt3
Area Time [s] Area Time [s] 

FU 0.9892 5.01 0.8189 3.86 
JACKOBS1 0.9870 49.60 0.9192 193.07 
JACKOBS2 0.9851 66.08 0.8354 77.29 
SHAPES0 0.5873 134.43 0.7810 0.74 
SHAPES1 0.6893 248.15 0.7373 3.37 
SHAPES2 0.9183 49.37 0.8864 5.25 
DIGHE1 0.6909 7.62 0.7991 1.52 
DIGHE2 0.7657 3.14 0.7699 0.26 
ALBANO 0.9653 37.93 0.8822 6.15 
DAGLI 0.9196 50.99 0.8947 4.75 
MAO 0.9644 71.53 0.9189 74.79 
MARQUES 0.9515 43.76 0.8702 22.83 
SHIRTS 1.0000 508.92 0.9706 37.93 
SWIM 0.7272 2206.42 0.8081 530.50 
TROUSERS 0.9986 193.54 0.9367 408.35 

 
Table 9 presents a comparison of the algorithm Solve2CS used by Del Valle et al. 

[18] and the algorithm Opt4, which is the best among the tested methods for the CSP. 
We can see that even for the naïve algorithm which we use to solve a cutting stock 
problem, the results can be very good. Only for one instance is Opt4 slightly worse than 
Solve2CS. For the other instances Opt4 finds much better results than Solve2CS. Note 
the huge difference between the computation times of the compared methods. Execution 
times of the algorithm Opt4 can be several orders of magnitude shorter than those of 
Solve2CS. This arises from the fact that Opt4 is a one-pass algorithm. On the other 
hand, Opt4 packs elements cleverly enough to use a smaller number of sheets than 
Solve2CS. This is a feature of all of the algorithms tested in this study. 

Table 10 presents results of computations for problems of type CSP with the con-
straints proposed by Song and Bennell [43] (data instances 3B). For completeness of 
results, we performed calculations for all instances from Table 1, and also for those 
missed in [43]. The columns of the table show the number of plates used (# Plates) and 
computation time in seconds (Time). In this table, a comparison of the algorithm Opt2.5 
with the results of methods CG1, CG10, CG100 from Song and Bennell [43] is shown. 
These are the best algorithms presented in that paper. 
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Fig. 5. Optimal solutions found by the algorithm Opt2.5 for problems of type KP 

  
Fig. 6. Exemplary layouts for problems of type PP 
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We would also draw attention to the large difference in the result for the instance Jak-
obs1, which may suggest a mistake in reporting of the results for algorithms CG1–CG100. 
The results (# Plates) obtained for OPT 2.5 are comparable to CG1–CG100. While the 
computation times for OPT 2.5 are clearly better, especially compared with the best 
method CG100, where times vary by several orders of magnitude, note must be taken 
of the differences in speed between implementations and computers. 

Table 9. Performance comparison of the algorithms Solve2CS and Opt4 for problems of type CSP 

Name Del Valle et al. [18] Solve2CS Opt4
# Plates Time [s] # Plates Time [s] 

FU 74 228.93 67 14.48
JACKOBS1 50 6,726.73 46 414.79
JACKOBS2 47 6,897.00 38 624.44
SHAPES0 55 26,701.14 51 4.24
SHAPES1 56 59,601.60 48 13.79
SHAPES2 63 9,413.40 64 11.61
DIGHE1 61 252.30 47 8.75
DIGHE2 46 45.18 43 1.41
ALBANO 84 6,750.17 78 38.14
DAGLI 58 9,304.73 50 42.34
MAO 49 7,073.23 41 109.59
MARQUES 53 8,298.07 49 137.97
SHIRTS 45 1,195,677.01 42 198.24
SWIM 60 466,819.10 47 1554.47 
TROUSERS 53 273,141.60 47 1440.29 

 Table 10. Performance comparison of algorithms CG1–CG100 and Opt4 for problems of type CSP 

Name 
Song and Bennell [43] Opt2.5 CG1 CG10 CG100

# Plates Time [s] # Plates Time [s] # Plates Time [s] # Plates Time [s] 
ALBANO 213 15 211 74 207 2181 220 4.13 
SHAPES2 178 5 180 56 174 476 191 3.92 
DAGLI 101 387 99 5979 97 74 449 100 51.87 
DIGHE2 124 15 111 252 108 2002 144 1.05 
DIGHE1 128 79 121 984 114 11 627 140 4.2 
FU 112 8 110 77 108 580 88 25.2 
JAKOBS1 329 78 301 1705 296 20 524 28 7379.89 
MAO 164 137 161 3225 136 51 627 72 177.17 
MARQUES 137 49 134 905 132 10 713 76 247.24 
SHAPES1 144 6 143 69 140 335 158 6.51 
SHIRTS 158 136 155 6983 159 113.68 
SWIM 114 533 106 6373 107 1357.51 
TROUSERS 367 1471 348 17430 327 63.56 
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The algorithms from Song and Bennell [43] were implemented in C++ and per-
formed on a PC with CPU 1.6 GHz. Our software was written in C# .net 4.0 and com-
puted on a PC with Intel Pentium Dual CPU 2.2 GHz. In view of the differences in 
processor speed and the fact that the same code implemented in C++ is usually twice as 
fast as when implemented in C#.net, we can assume as an approximation that our com-
putational platform is slightly slower – approximately 70% of the speed of the test plat-
form from Song and Bennell [43]. 

5. Conclusions 

This work has concerned the problem of placing two-dimensional elements with 
irregular shape on one or several rectangular plates with fixed dimensions. We consid-
ered three types of problems: knapsack problems (KP), placement problems (PP) (the 
unconstrained version of KP), and cutting stock problems (CSP). In problems of type 
KP and PP the objective is to place elements on a plate so as to obtain the best total area 
of the items. In the CSP we aim to carry out a manufacturing contract to cut a fixed 
number of items from the smallest number of sheets. 

For these problems we have developed a heuristic that places elements on the plate 
in one pass. The value of a fitting function determines which element is packed in each 
step of the algorithm. We propose eight fitting functions to evaluate partial solutions. 
Methods are based on the well-known concept of no-fit polygon. Fitting functions con-
sider both the area of the element being packed and the reduction in the NFP area of an 
element. 

The new algorithms were tested on instances found in the literature. We identified 
the best algorithm for each of three types of cutting problem. The results of the methods 
were compared with those published by Del Valle et al. [18], who considered the same 
types of problems. For KP and CSP instances the new methods appear to be much better 
than the methods described in the aforementioned paper. The new methods are superior 
in terms of both the total area of the elements packed and the computation time. For 
problems of type PP, our proposed methods are better only for a few instances, espe-
cially those with no rectangular items. For instances in which all elements have irregular 
shape, the new algorithms outperform the methods of Del Valle et al. [18]. For instances 
of type CSP the new method was also compared with the algorithms from Song and 
Bennell [43]. The results (# Plates) are comparable, while the computation times for the 
new method are clearly better, sometimes by several orders of magnitude. 

The advantage of the presented one-pass heuristic is its simplicity, easy implemen-
tation and relatively short calculation time. It is also easy to implement the algorithms 
for parallel computation, which can significantly reduce computation time on computer 
systems with multicore processors. 
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One of the possibilities of further research on the presented algorithms could be the 
use of other sequences of elements included in the evaluation of partial solutions and 
new fitting functions. 

In future work we also plan to adapt the algorithms presented here to problems with 
plates of non-rectangular shape and for cutting elements with holes. We intend also to 
modify the methods to work with problems where only one dimension of the sheet is 
fixed, i.e., for those classified as two-dimensional irregular open dimension problems 
or irregular strip packing problems. 
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