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BRANCH AND BOUND ALGORITHM FOR A DISCRETE 
MULTILEVEL LINEAR FRACTIONAL PROGRAMMING PROBLEM 

An algorithm is proposed to find an integer solution for bilevel linear fractional programming 
problem with discrete variables. The method develops a cut that removes the integer solutions which 
are not bilevel feasible. The proposed method is extended from bilevel to multilevel linear fractional 
programming problems with discrete variables. The solution procedure for both the algorithms is elu-
cidated in the paper. 
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1. Introduction 

A multilevel programming model deals with decision making problems in a hierar-
chical system with interactive levels. In a multiple level hierarchical organization, the 
players at each level optimize their objective functions keeping in mind the actions of 
the players at other levels. Candler and Norton [7] first used the terms bilevel and mul-
tilevel programming. In 1982, Bard and Falk [1] developed an explicit solution to the 
multilevel programming problem. A multilevel programming model is used for analys-
ing and planning many situations in real life. Candler and Norton [7] presented a version 
of this problem in the context of economic policy. In 1998, Migdalas et al. [20] pub-
lished a book on multilevel optimization which is part of a series on non-convex opti-
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mization and its applications. In 2015, Perez et al. [23] proposed a multi-criteria ap-
proach for an urban passenger transport system. In 2016, Lu [16] gave a survey on mul-
tilevel decision making. In 2017, Hernandez et al. [14] developed a model by applying 
multi-criteria techniques to plan the harvest of a forest.  

The simplest case of a multilevel programming problem is bilevel programming. 
The general bilevel programming problem, BLPP, is defined as, 

BLPP:  
1

1 1 2Max , ,
X

F X X where 2X  solves  
2

2 1 2 1Max , , for a given ,
X

F X X X  

subject to 1 2( , ) ,X X S  where 




1 2 1 1 2 2

1 2 r

( , ) :

( , is an intege v) r e cto

S X X A X A X b

X X

  
 

Here,  1 1 2,F X X  and  2 1 2,F X X  can be linear or non-linear.  1 1 2,F X X  and 

 2 1 2,F X X are the objective functions of the leader and the follower, respectively. The 
feasible region S is assumed to be non-empty and bounded. The vectors of decision 
variables, 1

1
nX Z  and 2

2 ,nX Z  are under the control of the leader and follower, re-
spectively. 

Bilevel/multilevel programming problems with integer variables are of high importance 
in business and industry. Such problems are of particular importance when fractional units 
are unrealistic because units are not divisible. Many cutting plane algorithms, like the Dan-
tzing cut, Gomory cut, edge truncating cut, etc., are used to solve such problems. These 
problems have multiple applications in practical fields. Dempe et al. [11] applied bilevel 
programming with discrete variables to a problem involving the supply of natural gas. Claas-
sen [9] analysed the use of management tools in paper production.  

Several algorithms have been proposed to solve bilevel and multilevel programming 
problems. The most notable among them are the penalty function approach [26], the 
ranking method [21], and the branch and bound method [13]. Different methodologies 
for solving such problems using the branch and bound algorithm have been proposed 
by various authors. The first known branch and bound algorithm was developed in 1960 
by Land and Doig [15] as an application for solving mixed and pure integer program-
ming problems. Bienstock [4] presented computational results for a branch and bound 
algorithm to solve a family of mixed integer quadratic programming problems. Using 
various strategies, Bard and Moore [2] proposed a branch and bound algorithm for solv-
ing the bilevel programming problem. Luedtke [17] proposed an algorithm for branch 
and bound cut decomposition to solve chance constrained mathematical programs. The 
significance of the branch and bound algorithm can be seen in practical situations. Costa 
et al. [10] used the branch and bound algorithm to determine strategically optimal rules 
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of operation for any type of water distribution system. In his paper, Maroti [18] proposed 
a branch and bound approach to find robust railway time tables. 

In BLPP, linear fractional objective functions are useful in production planning, 
corporate planning, financial planning and so forth. Fractional programming problems 
(FP) are a subclass of non-linear programming problems in which the objective function 
is non-linear, but the constraints are all linear. Charnes and Cooper [8] replaced the FP 
problem by two equivalent linear programs. Swarup [25] developed a simplex type al-
gorithm for solving (FP) assuming that the solution set is regular and the denominator 
is strictly positive at all feasible points. Techniques for solving non-linear fractional 
programming problems have been suggested by Dinkelbach [12]. Schiable [24] listed 
many applications of fractional programming problems. Mathur and Puri [19] studied 
the bilevel fractional programming problem. Calvete and Gale [6] solved the bilevel 
linear fractional programming problem by a penalty method. In 2012, Pal and Gupta 
[22] solved bilevel fractional programming problems by a fuzzy goal programming ap-
proach based on a genetic algorithm. Bhargava[3] solved a multilevel programming 
problem in which the objective function at each level is linear fractional. The author 
proposed a K-th best algorithm to find the optimal solution.  

In the present paper, we contemplate a new perspective which is different from the 
approaches developed by previous authors. We have solved the bilevel linear fractional 
programming problem with discrete variables based on a cut which locates the integer 
solutions to the problem that are bilevel feasible. This concept is extended to the multi-
level linear fractional programming problem with discrete variables. 

This paper is divided into the following sections. In Section 2, a methodology is 
proposed for the bilevel linear fractional programming problem with discrete variables, 
(DBLFPP). A numerical example is solved illustrating the solution procedure for DBLFPP. 
In Section 3, the developed procedure is adapted to the multilevel programming problem 
with discrete variables, DMLLFPP. The method for solving DMLLFPP is illustrated 
with an example. Finally, Section 4 presents conclusions.  

2. Bilevel linear fractional programming problem 
with discrete variables 

The linear fractional bilevel programming problem with discrete variables is math-
ematically stated as DBLFPP: 

 
1

11 1 12 2 1
1 1 2

11 1 12 2 1

Max ,
X

c X c XF X X
d X d X




 


   

where X2 solves 
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 
2

21 1 22 2 2
2 1 2 1

21 1 22 2 2

Max , , for a given 
X

c X c XF X X X
d X d X




 


 
 

subject to  

1 1 2 2A X A X b    

1 2
1 2,n nX Z X Z    

1 2
11 11 21 21 12 12 22 22, , c , , , , , c ,n nT T T T T T T Tc d d Z c d d Z   

1 2
1 2, ,m n m nA Z A Z   mb Z  and 1 2 1 1, , , , Z      

Here 

11 1 12 2 1 21 1 22 2 2 1 2( ) 0 and ( ) 0 ( , )d X d X d X d X X X S          

where 




1 2 1 1 2 2

1 2

( , ) :
( , ) is an integer vector

S X X A X A X b

X X

  
  

Here, S is the feasible region of DBLFPP and it is assumed to be non-empty, com-
pact and contains integer points. Here,  1 1 2,F X X  and  2 1 2,F X X are the objective 
functions of the leader and the follower, respectively. 

For each X1, define the follower’s feasible set as 

 2
1 2 2 2 2 1 1( ) | ,nS X X X Z A X b A X     

Define the reaction set R(X1) as the set of all solutions which maximize the fol-
lower’s objective function 

   
2

2 1 2 21 1arg Max ( , ) : ( )
X

F X X XR SX X   

The projection of S onto the leader’s space is  

 1
1 1 1 2 1 1 2 2: ( , ) :nS X Z X X A X A X b       
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The inducible region of the leader’s problem is denoted by 

 1
1 2 1 1 1 2 2 2 1IR ( , ) : , , ( )nX X X Z A X A X b X R X       

IR represents the set of all bilevel feasible solutions which are both optimal for the 
follower and feasible for the leader. 

In the bilevel linear fractional programming problem defined above, the objective 
functions at both levels are linear fractional, hence they are quasi-concave. The induci-
ble region IR of DBLFPP is comprised of the union of connected faces of S and the 
optimal solution is at an extreme point of the feasible region S. This suggests using 
a method that searches over the set of extreme points to develop an algorithm for solving 
DBLFPP. To avoid the ambiguity of multiple optima, assume that for each value of 
X1 S1, there is a unique solution to the follower’s problem. Here, we assume that the 
IR of DBLFPP is non – empty to ensure the existence of a solution to DBLFPP. Thus, 
we have the following lemmas as stated and proved in [5]. 

Lemma 1. The inducible region of the quasi-concave bilevel programming problem 
is piecewise linear [5].  

Lemma 2. There is an extreme point of the feasible region S which is a locally 
optimal solution to the quasi-concave bilevel programming problem [5]. 

Note: There is a difference between DBLFPP and the integer linear fractional pro-
gramming problem. In DBLFPP, a solution (X1, X2) in the feasible set S satisfies the 
condition that (X1, X2) should be bilevel feasible, that is X2  R(X1). An integer solution 
provides an upper bound on the optimal value for the follower only when it belongs to 
the inducible region IR.  

Now, we define the single level linear fractional programming problem (SLLFPP). 
It is a relaxed version of DBLFPP in which the follower’s objective function is not 
considered: 

 
1 2

11 1 12 2 1
1 1 2,

11 1 12 2 1

Max ,
X X

c X c XF X X
d X d X




 


 
  

subject to (X1, X2)  S. 
The problem SLLFPP is solved on the feasible region S. The variables in this prob-

lem are required to be integers. Since SLLFPP is an integer single level linear fractional 
programming problem, it can be solved using the Branch and bound method. If an inte-
ger solution (X1, X2) is obtained at some extreme point, then 1 1 2( , )F X X  is a lower 
bound on the optimal value of the leader.  
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Auxiliary problem for DBLFPP. Define the auxiliary Min–Max problem as LLFPP 

1 2

21 1 22 2 2
2 1 2,

21 1 22 2 2

Min ( , )
X X

c X c XF X X
d X d X




 


 
  

subject to 1
1

nX R   

X2
2

2 1 2arg Max ( , )
X

F X X  

subject to 1 1 2 2A X A X b    

2
2

nX R  

If LLFPP is infeasible or unbounded, then DBLFPP is also infeasible or unbounded, 
as appropriate. Let the value of the objective function of LLFPP be Z2 corresponding to 
the optimal solution 1 2

ˆ ˆ( , ).X X  If 1 2
ˆ ˆ( , )X X is an integer solution, then Z2 is an upper 

bound on the value of the lower level objective function for any bilevel feasible solution. 
Suppose that the solution 1 2

ˆ ˆ( , )X X  obtained on solving LLFPP is not an integer solu-
tion. Choose a variable which is not an integer from this solution. This variable is called the 
branching variable. This branching variable is used to formulate two feasible sets Sʹ and S 
from the original feasible set S. Define the two constrained sets Sʹ and S as follows  

 2 2
ˆ ,S S X X         2 2

ˆ 1S S X X        

Thus, the two subproblems generated, namely DBLFPPʹ and DBLFPP, are defined 
on the feasible sets Sʹ and S, respectively. The two subproblems are defined as  

 DBLFPPʹ:  

1

11 1 12 2 1
1 1 2

11 1 12 2 1

Max ( , )
X

c X c XF X X
d X d X




 


 
  

subject to 1 2( , ) .X X S   
 DBLFPP: 

1

11 1 12 2 1
1 1 2

11 1 12 2 1

Max ( , )
X

c X c XF X X
d X d X




 


 
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subject to 1 2( , ) .X X S   
The problem DBLFPPʹ. Consider DBLFPPʹ. Let the optimal solution obtained af-

ter solving DBLFPPʹ be 1 2( , ).X X   Two cases arise: 
1. If 1 2( , )X X   is an integer solution, then solve the follower’s problem for 1 1.X X   

Let the solution of the follower’s problem be 1 2
ˆ( , ).X X   

If 2 2
ˆ ,X X  then this solution is bilevel feasible. Also, if 1 1 2( , )F X X  is greater than 

the largest feasible value found so far of 1 1 2 1 1 2( , ),  let ( , ).F X X UB F X X   The value of 
the objective function corresponding to this integer bilevel feasible solution is a lower 
bound on the optimal value of the leader in DBLFPP. 

If 2 2
ˆX ,X   the solution is not bilevel feasible, thus prune the current node.  

2. If 1 2( , )X X  is not an integer solution, then select a node for branching. Choose 
a branching variable. Solve the resulting two linear fractional programming problems 
and proceed as in case 1. 

The problem DBLFPP. Consider the problem DBLFPP. At any stage, when 
solving DBLFPP there are three possibilities:  

1. DBLFPP is infeasible, thus the node is closed. 
2. S is empty. The problem has no solution. 
3. S contains an optimal solution and DBLFPP is solved to find the optimal solu-

tion.  
If the solution obtained is an integer solution, then it is checked for bilevel feasibil-

ity. If the solution obtained is not an integer solution, then that node is pruned.  

Solution to the problem DBLFPP. Solve the two problems DBLFPPʹ and DBLFPP 
as described above. Accumulate all the integer solutions from these two problems which are 
bilevel feasible. The integer bilevel feasible solution that gives the maximum value to the 
objective function 1 1 2( , )F X X  is an optimal solution for the problem DBLFPP. 

Algorithm for the DBLFPP. 
Step 1. Define the LLFPP problem for the bilevel linear fractional programming 

problem with discrete variables, DBLFPP. Let its optimal solution be 1 2
ˆ ˆ( , ).X X  If it is 

an integer solution, stop. 
If 1 2

ˆ ˆ( , )X X is not an integer solution, choose a branching variable and correspond-
ingly define the feasible sets Sʹ and S as  

   2 2 2 2
ˆ ˆ, S 1S S X X S X X                
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Formulate the respective problems DBLFPPʹ and DBLFPP. 
Step 2. Solve the subproblem DBLFPPʹ. Let its optimal solution be 1 2( , ).X X    
If it is an integer solution, go to step 4.  
If 1 2( , )X X  is not an integer solution, go to step 3. 
Step 3. Select a node and choose a branching variable to formulate two subprob-

lems.  
Go to step 2.  
Step 4. Set 1 1X X   in the follower’s problem. Let the solution so obtained be 

1 2
ˆ( , ).X X   

If 2 2
ˆ ,X X  go to step 5. If 2 2

ˆX ,X  prune the current node. 
Step 5. 1 2( , )X X  is a bilevel feasible solution. Go to step 9. 
Step 6. Check the constrained set S. If S is empty, DBLFPP has no solution. 
If S is non-empty, solve the problem DBLFPP and go to step 7.  
Step 7. If DBLFPP is infeasible, prune the current node. If DBLFPP is feasible, 

solve the problem to find its optimal solution. If the optimal solution so obtained is an 
integer solution, go to step 8, otherwise prune the current node.  

Step 8. Check the integer solution for bilevel feasibility. Go to step 9.  
Step 9. Collate the set of bilevel feasible solutions. Out of these solutions, find a so-

lution which maximizes the value of the objective function 1 1 2( , ).F X X  This is the op-
timal solution of DBLFPP. 

Illustrative example. Consider the following discrete bilevel linear fractional pro-
gramming problem  

 
1

1 2 3
1 1 2 3

1 3

3 2 2Max , ,
4 2 6x

x x xF x x x
x x
 


 

 

 
2 3

1 2 3
2 1 2 3,

3

4Max , ,
8x x

x x xF x x x
x

  


  

subject to 2 34 9,x x   1 22 5,x x  1 33 13,x x   1 2 3, , 0x x x  and integers. 

Solution. Define the auxiliary Min–Max problem as LLFPP: 

1 2 3

1 2 3
2 1 2 3, ,

3

4Min ( , , )
8x x x

x x xF x x x
x

  



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subject to 1 0,x    

 
2 3

2 3 2 1 2 3,
, arg Max , ,

x x
x x F x x x   

subject to 2 34 9,x x   1 22 5,x x   1 33 13,x x   2 3, 0.x x    
Solving LLFPP, the optimal solution so obtained is 1 2 30, 5/2, 13/8.x x x     
Here, neither x2 nor x3 are integers. We choose x2 to define the constrained sets Sʹ 

and S as 

   1 2 2 22 , 3S S x S S x        

Define DBLFPP1́: 

1 2 3

1 2 3
1 1 2 3, ,

1 3

3 2 2Max ( , , )
4 2 6x x x

x x xF x x x
x x
 


 

  

subject to 2 34 9,x x   1 22 5,x x   1 33 13,x x   2 2,x   1 2 3, , 0x x x  and integers.  
DBLFPP1 

1 2 3

1 2 3
1 1 2 3, ,

1 3

3 2 2Max ( , , )
4 2 6x x x

x x xF x x x
x x
 


 

  

subject to 2 34 9,x x  1 22 5,x x   1 33 13,x x  2 3,x  1 2 3, , 0x x x  and integers. 
Solve DBLFPPʹ. The solution obtained is 2 32, 7/4.x x   
Select the branching variable, x3, and formulate two subproblems as follows 
DBLFPP2́:  

1 2 3

1 2 3
1 1 2 3, ,

1 3

3 2 2Max ( , , )
4 2 6x x x

x x xF x x x
x x
 


 

 

subject to 2 34 9,x x  1 22 5,x x   1 33 13,x x  2 2,x  3 1,x  1 2 3, , 0x x x   and inte-
gers. 

DBLFPP2:  

1 2 3

1 2 3
1 1 2 3, ,

1 3

3 2 2Max ( , , )
4 2 6x x x

x x xF x x x
x x
 


 
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subject to 2 34 9,x x  1 22 5,x x  1 33 13,x x  2 2,x  3 2,x  1 2 3, , 0x x x  and inte-
gers. 

Solve DBLFPP2́. The integer solution so obtained is 1 2 31, 2, 1.x x x    
To check whether this solution is bilevel feasible, set x1 = 1 in the follower’s prob-

lem and solve the resulting problem: 

 
2 3

2 3
2 1 2 3,

3

5Max , ,
8x x

x xF x x x
x
 




  

subject to 2 34 9,x x   22 4,x  33 12,x  2 2,x  3 1,x  2 3, 0x x  and integers. 
The solution of the above problem is 2 32, 1.x x   (1, 2, 1) is a bilevel feasible 

solution. Again, solving DBLFPP2, the bilevel feasible solution is (3, 1, 2). Similarly, 
if we choose x3 as the branching variable, we obtain the same set of bilevel feasible 
solutions. The flow diagram for the above problem is as follows:  

 

Considering the solutions from the above nodes, we have 

F2: 0.875 0.884 0.9420  < 1, F1: 0.681 0.75 0.78 0.89    



Algorithm for a discrete multilevel linear fractional programming problem 

 

15

We get two sets of bilevel feasible solutions, (1, 2, 1) and (3, 1, 2). The maximum value 
of F1(X1,  X2) corresponds to the integer bilevel feasible solution (1, 2, 1). Hence, the optimal 
solution for DBLFPP is 1 2 31, 2, 1,x x x    for which F1 = 0.75 and F2 = 0.875. We 
observe that 0.9420 is an upper bound on the value of the lower level objective function.  

3. Multilevel linear fractional programming problem 
with discrete variables 

The mathematical representation of the K-level programming problem is as follows: 
DMLLFPP:  

1

2

11 1 12 2 1 1
1

11 1 12 2 1 1

21 1 22 2 2 2
2 1

21 1 22 2 2 2

1 1 2 2

1 1 2 2

....Max ( )
....

....Max ( ) , for a given
....

....Max ( ) for 

....K

K K

X
K K

K K

X
K K

K K KK K K
KX

K K KK K K

c X c X c XF X
d X d X d X

c X c X c XF X X
d X d X d X

c X c X c XF X
d X x X d X










   


   

   


   

   


   



1 2 1a given ( , , ..., ) KX X X 

 

subject to 1 1 2 2 .... , 1, 2, ...,i i iK K iA X A X A X b i m       

1 2
1 2 `, , ... Kn n n

KX Z X Z X Z      

The above problem has one decision maker at each level, n decision variables and 
m constraints. 1 2( , , ..., ),kX X X X  1 2 .... ,Kn n n n     where the decision vector 

,kn
kX Z  k = 1, 2, ..., K is under the control of the kth level decision maker who has 

nk decision variables.  
Here 

 1 1 2 2 1 2( .... ) 0, 1, 2, ..., , ( , , ..., )j j jK K j K Md X d X d X j K X X X S         

where  

1 2 1 1 2 2 1 2{( , , ..., ); ... , ( , , ..., )M K i i iK K i KS X X X A X A X A X b X X X       
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is a vector of integers. 
Here, SM is the feasible region of the discrete multilevel linear fractional program-

ming problem DMLLFPP. In the problem DMLLFPP, the decision makers at each level 
solve a linear fractional programming problem. Therefore, it is quasi-concave and its 
optimal solution will be at an extreme point of SM. 

Auxiliary problem for DMLLFPP. Define the t-auxiliary problem (t = 2, ..., K) as 
AMLLFPP: 

1 1 2 2

1 1 2 2

....Min ( )
....t

t t tt K t
tX

t t tt K t

c X c X c XF X
d X d X d X




   


     

subject to 1
1

nX R   

arg Max ( ), 2, ...,
t

t tX
X F X t K   

subject to 1 1 2 2 ... , 1, 2, ..., ,i i iK K iA X A X A X b i m      where 

 , 2, ...,tn
tX R t K   

If each of the auxiliary problems (t = 2, ..., K) is feasible, then the problem DMLLFPP 
is feasible. Let Z2, Z3, ..., ZK be the values of the objective functions corresponding to the 
optimal solution obtained on solving the auxiliary problems for t = 2, ..., K. 

Let *
2 3ax{ , , ..., }.KZ M Z Z Z  Then *Z  is an upper bound on the value of the lower 

level objective functions for any feasible solution. Let the solutions obtained on solving 
the auxiliary problems AMLLFPP be ˆ( ), 2, ..., ,tX t K  where 

1 2 3
ˆ ˆ ˆ ˆ ˆ( ) ( , , , ..., ) 2, ...,t t t t t

kX X X X X t K    

From these (K  1) solutions, choose the variables which are not integer variables. 
These variables are called branching variables. Accordingly, define the constrained sets 

1
jS  and 2

jS  as 

 1 2 3ˆ ˆ ˆMax , , ..., , 2, ...,k
j M j j j jS S X X X X j k                

 

 2 2 3ˆ ˆ ˆMax 1, 1, ..., 1 , 2, ...,k
j M j j j jS S X X X X j k                   
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Algorithm for multilevel discrete linear fractional programming problem 
DMLLFPP 

Step 1. Consider the problem DMLLFPP. 
Step 2. Define the auxiliary problems AMLLFP for t = 2, ..., K. 
Step 3. Solve the problem AMLLFP for each t = 2, ..., K. 
If the solution obtained is an integer solution, stop. Go to step 10. 
If the solution so obtained is not an integer solution, choose the variables which are 

not integers as branching variables. Define the constrained sets 1
jS  and 2

jS  as 

  1 2 3ˆ ˆ ˆMax , , ..., , 2, ...,k
j M j j j jS S X X X X j k                

 

 2 2 3ˆ ˆ ˆMax 1, 1, ..., 1 , 2, ...,k
j M j j j jS S X X X X j k                   

 

Formulate the problems DMLLFPP1
j and DMLLFPP2

j corresponding to the sets 1
jS  

and 2.jS  
Step 4. Set  j = 2. 
Step 5. Solve the problem DMLLFPP1

j. Let its optimal solution be 1 2( , , ..., ).j j j
KX X X  

If it is an integer solution, go to step 8. 
Otherwise, choose the branching variables to formulate the sub problems and solve 

till we get an integer solution. Go to step 8. 
Step 6. Consider the problem DMLLFPP2

j corresponding to the set 2.jS  

If 2
jS  is empty, DMLLFPP2

j 
  has no solution. If 2

jS  is non-empty, solve DMLLFPP2
j. 

Go to step 7.  
Step 7. If DMLLFPP2

j is infeasible, prune the current node. If DMLLFPP2
j is feasi-

ble, find its optimal solution. If the solution so obtained is an integer solution, go to 
step 8. 

Otherwise, prune the current node. 
Step 8. Set 1 1

jX X  in the first follower’s problem and solve it. Let the optimal 
solution be 1 2 2( , , ..., ) .j j j

KX X X  If 1 2 1 1 2 2( , , ..., ) ( , , ..., ) ,j j j j j j
K KX X X X X X  go to step 9.  

Otherwise, set j = j + 1 and go to step 4. 
Step 9. Put 1 1

jX X  and 2 2
jX X  in the second follower’s problem and continue the 

process. If at any stage 1 1( , ..., ) ( , ..., ) ( 1, 2, ..., K, 1, 2, ..., ),j j j j
K s K lX X X X s l K  

stop.  
Set  j = j + 1, go to step 4. 
If 1 1( , ..., ) ( , ..., ) ,j j j j

K s K lX X X X  go to step 10. 
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Step 10. From all the integer solutions so obtained, formulate a set of feasible solu-
tions. From this set, find a solution which maximizes the value of the objective function 
F1(X). This is the optimal solution of the problem DMLLFPP. 

Illustrative example. Consider the following trilevel discrete linear fractional pro-
gramming problem, DMLLFPP:  

1

1 2 4
1 1 2 3 4

1 2 3 4

2 4Max ( , , , )
2 2 3 1x

x x xF x x x x
x x x x

 


   
  

2

2 4
2 1 2 3 4 1

1 2

3 12Max ( , , , )  for a given 
2 2x

x xF x x x x x
x x
 


  

 

3 4

1 4
3 1 2 3 4 2,

3

2 11Max ( , , , )  for a given 
1x x

x xF x x x x x
x
 




 

subject to x2 + x3 + 2x4  20, 7x2 + 4x4  36, –x2 + 4x4   14, x1+ 3x2 + 2x4  11,  
x1 + 2x2   5, 1 2 3 4, , , 0x x x x  and integers. 

Solution. Here, we have 2-auxiliary problems, corresponding to F2 and F3. Solving 
these problems, we obtain (0, 5/2, 7/4) with Z2 = 0.5238 and (0, 8/7, 79/7, 53/14) with 
Z3 = 1.2380, respectively. Therefore, Z* = Max (Z2, Z3) = Max (0.5238, 1.2380) = 1.2380. 
Therefore, Z* = 1.2380 is an upper bound on the value of the lower level objective func-
tions for any feasible solution. Here, x2 and x4 are the branching variables.  

Define the constrained sets as 

1
2 2

5 8Max ,
2 7MS S x

                  
  

2
2 2

5 8Max 1, 1
2 7MS S x

                   
 

1
4 4

7 53Max ,
4 14MS S x

                  
  

2
4 4

7 53Max 1, 1
4 14MS S x

                   
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Applying the algorithm to the feasible sets defined above, we obtain 

 

The optimal solution to the problem DMLLFPP is (1, 2, 14,2) with 1Max 0.6315,F 
*

2Max 0.5517F Z   and *
3Max 1.067 Z .F    

4. Conclusions 

In this paper, we discussed discrete bilevel linear fractional programming problem 
DBLFPP. A branch and bound algorithm to solve DBLFPP has been presented. In this 
method, an inequality is developed which is used to cut the integer points which are not 
bilevel feasible. This inequality is used to define two subproblems, DBLFPPʹ and 
DBLFPP. In this algorithm, iterations of branch and bound cut are applied to both the 
problems DBLFPPʹ and DBLFPP. It has been observed that DBLFPPʹ is more likely 
to contain the optimal solution. This paper has also presented an extension of this branch 
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and bound algorithm to Multilevel Linear Fractional Programming Problem with Dis-
crete Variables DMLLFPP. The formulation presented above corresponds to an opti-
mistic approach from the point of view of the leader. According to this optimistic ap-
proach, the leader assumes that the followers are willing to support him. This means 
that out of the set of optimal solutions for a lower level problem, the follower will select 
a solution which is best from the leader’s point of view. 
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