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SOME NOTES ON THE PROPERTIES  
OF INCONSISTENCY INDICES IN PAIRWISE COMPARISONS 

Pairwise comparisons are an important tool of modern (multiple criteria) decision making. Since 
human judgments are often inconsistent, many studies have focused on the means of expressing and 
measuring this inconsistency, and several inconsistency indices have been proposed as an alternative 
to Saaty’s inconsistency index, CI, and consistency ratio, CR, for reciprocal pairwise comparison ma-
trices. The aims of this paper are threefold: firstly, a row inconsistency index (RIC) is proposed and the 
properties of this index are examined. Secondly, a comparison of selected inconsistency indices for 
a corner pairwise comparison matrix is provided. Last, but not least, another axiom about the upper 
bound on the value of an inconsistency index is postulated, and a set of selected inconsistency indices 
is examined with respect to this axiom. Numerical examples complete the paper. 
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1. Introduction 

Pairwise comparisons are a well-known tool for decision making with their history 
dating back to the early works of Lull and Condorcet, together with Thurstone’s A Law 
of Comparative Judgments [29]. They enable us to compare two objects, usually alter-
natives, qualities or features, at the same time. Pairwise comparisons are especially use-
ful when the number of objects to be compared is large, as they reduce the complexity 
of a problem and aid avoiding cognitive overload, as according to Miller [20], humans 
are only able to compare 7 objects at one time. Also, from pairwise comparisons, a pri-
ority vector (a vector of the weights of compared objects) can be derived via some well- 
-known method such as the eigenvalue method or the geometric mean method (the least 
logarithmic squares method), for the former see, e.g., Saaty [24–27], for the latter see, 
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e.g., Chandran et al. [9]. In particular, the analytic hierarchy process (AHP) is perhaps 
the best known application of pairwise comparisons, successful applications of the AHP 
can be found, e.g., in [30]. 

Apart from the problem of deriving a priority vector, another important issue is the 
problem of the inconsistency of pairwise comparisons, which has been the subject of 
studies on a (numerical) comparison of existing inconsistency indices and efforts to de-
fine an axiomatization of their properties. For example, when comparing three alterna-
tives, A, B and C, a decision maker has to perform three pairwise comparisons: A with 
B, A with C and B with C. If A is judged to be twice as good as B and B is judged to be 
3 times as good as C, then A should be 6 times as good as C. Although this task seems 
simple, decision makers are seldom consistent, and their judgments are “erroneous” to 
a certain degree. 

To measure inconsistency in pairwise comparisons, several inconsistency indices 
(see Section 2) have been proposed since 1977 [24, 12, 14, 21, 18, 6]. However, until 
recently, the properties of these indices and their mutual similarity have only rarely been 
studied [5]. Furthermore, with the growing number of different indices, the problem of 
what conditions a suitable index should satisfy from a mathematical point of view has 
emerged, leading to a collection of studies focusing on the axiomatization of the prop-
erties of inconsistency indices (cf., e.g. [16, 22, 6, 7]). Nevertheless, the problem of 
axiomatization has not yet been solved, as new indices have emerged, in particular, ex-
tensions of pairwise comparisons to fuzzy sets and linearly ordered Abelian groups (cf., 
e.g., [8, 23]. 

The aims of this paper are as follows: A new row inconsistency index (RIC) has 
been defined and its properties in terms of satisfying (or, rather, not satisfying) a selected 
set of six axioms have been discussed. This index is based on a dot product of the row 
vectors of a pairwise comparison matrix. A “cosine” approach was followed in the “co-
sine optimisation” of Kou and Lin [18], but their inconsistency index, CCI, was defined 
to attain the value of 1 for a fully consistent set of pairwise comparisons, unlike all the 
other indices, which assign the value 0 to fully consistent cases. Also, the authors pro-
vided only one property of their CCI index (namely that 0 1CCI  ). Last, but most 
importantly, although both the CCI and RIC indices use the cosine function, they are 
defined differently, and also attain different numerical values. The CCI is computed 
from a normalised pairwise comparison matrix via an objective function for a given 
optimization model (see [18], p. 227), while the RIC index utilises only (and directly) 
the row vectors of a given pairwise comparison matrix. 

An “upper bound axiom” for inconsistency indicators has been postulated and a set 
of selected inconsistency indicators has been examined with respect to this axiom. 
A comparison of selected inconsistency indices has been provided for a corner pairwise 
comparison matrix. Also, several numerical examples have been provided for better un-
derstanding. 
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The paper is organised as follows: in Section 1 preliminaries are provided, section 2 
describes some chosen inconsistency indices and section 3 presents some inconsistency 
axioms, in section 4 a new inconsistency index is introduced and its properties are 
proved, in section 5 selected indices are examined with respect to an additional axiom, 
and section 6 includes a numerical example. The article ends with some conclusions. 

2. Preliminaries 

For simplicity, but without loss of generality, let us consider pairwise comparisons 
of alternatives. 

Let X be a given set of n alternatives to be compared. Let aij denote the decision 
maker’s preference for the i-th alternative over the j-th alternative. Also, we set 0;ija 

 , 1, 2, ..., .i j n   
Pairwise comparisons are called reciprocal, if the following property is satisfied: 

  1 , , 1, 2, ...,ij
ji

a i j n
a

    (1) 

Property (1) is usually strictly required for pairwise comparisons. All pairwise com-
parisons can be arranged into a square n n  matrix, ( ),ijA a  called a pairwise compari-
son matrix (PCM): 
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Further, pairwise comparisons (a pairwise comparison matrix) are called consistent, 
if the following property is satisfied: 

 ; , ,ij jk ika a a i j k   (2) 

The matrix A is consistent, if and only if the priority vector (vector of weights) 
 1, ..., nw w w  satisfies the following relation: 
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,i
ij

j

wa
w

 ,i j  

A priority vector w can be derived via Saaty’s eigenvalue method (EM) [24]: 

 maxAw w  (3) 

where max is the largest (positive) eigenvalue of A. The existence of the largest (posi-
tive) eigenvalue max of the matrix A is guaranteed by the Perron–Frobenius theorem 

[25]. Usually, the vector w is normalised so that 1.w   
Also, the geometric mean method (the least squares method) can be used to obtain w: 
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 
 



 
 (4) 

Both methods yield the same result when the matrix A is consistent. Otherwise, the 
priority vectors differ slightly, see the comparative study of Ishizaka and Lusti [13]. 

For further considerations, it should be noted that if the matrix A is reciprocal and 
consistent, then max n   and rank(A) = 1, which means that all of the rows (columns) 
of A differ only by a multiplicative constant. 

Definition 1. Let MR denote the set of all matrices ( ),n n ijA a 0;ija 

 , 1, 2, ..., ,i j n  satisfying (1), and let MC denote the set of all matrices ( ),n n ijA a
 

0;ija   , 1, 2, ...,i j n   satisfying (2). 
By the definition above, MR is the set of all reciprocal pairwise comparison matrices 

with positive elements of order n, and MC is the set of all consistent pairwise comparison 
matrices with positive elements of order n. 

Remark 1. As the matrix A with elements 1, ,ija i j   belongs to both MR and MC, 
both sets are non-empty, and clearly: .C RM M  Furthermore, consistency (2) implies 
reciprocity (1), but not vice versa. 

Definition 2. A corner pairwise comparison matrix CPC of order n is defined as 
follows: 
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A corner pairwise comparison matrix is a special (simplified) case of a reciprocal 
matrix which is consistent if and only if x = 1. 

3. Inconsistency indices 

This section introduces and discusses several inconsistency indices for a pairwise 
comparison matrix, starting with the oldest one, Saaty’s consistency index CI [24–27]: 

 max

1
nCI

n
 




 (5) 

According to Saaty, a PCM with a CI  0.10 is sufficiently consistent, and the EM 
method (3) can be employed. However, the CI tends to grow with n, hence Saaty intro-
duced a more suitable measure of inconsistency, the consistency ratio CR [26–27]): 

 
CICR
RI

  (6) 

RI in (6) denotes random inconsistency, that is the average of the CI of random matrices 
(generated using the Monte Carlo method) of order n. For the values of RI see, e.g., [2]. 

Again, a PCM with a CR less than or equal to 0.10 is sufficiently consistent for the 
eigenvalue method. Nevertheless, this threshold of 0.10 has been criticised by some 
authors [11, 15]. Notably, the RI was found to converge to the value 1.58 with increasing n. 
This fact led to some criticism of the CR (and CI), as random inconsistency should be 
increasing in n (the larger a random matrix, the more “mess” it contains). 

Let ( )ij RA a M  and let ( )ijA a be the normalised matrix obtained from A by divid-
ing each column by the sum of all the elements in that column. Further, let w be the 
normalized priority vector (the vector of weights) obtained from A using the EM or the 
geometric mean method. Then the GWI inconsistency index [12] is defined as: 
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1 1

1 n n
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GWI a w
n  

   (7) 

Let ( ) .ij RA a M  Then the PLI inconsistency index [21] is defined as follows: 

 
2 1

1 1 1

6 2
( 1)( 2)

n n n
ij jkik

i j i k j ij jk ik

a aaPLI
n n n a a a

 

    

 
       

   (8) 

The geometric consistency index GCI [1] is defined as follows: 
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where the priority vector w is obtained by the geometric mean method. 
Let ( )T n  be the set of all ordered triples (“triads”)  , ,ij jk ika a a  satisfying (2) for 

 , , 1, 2, ..., .i j k n   Then Koczkodaj’s index KII [14] is defined as follows: 

 
( )

max min 1 , 1 ij jkik

n
ij jk ik

a aaKII
a a a

  
        

 (10) 

For other inconsistency indices, see, e.g., [4, 28, 23, 22]. 
The majority of such indices describe the central tendency (mean) of inconsistent 

judgments. On the other hand, Koczkodaj’s inconsistency index aims to express the 
largest inconsistency present in a given PCM. It should be noted that indices such as 
PLI or GWI can be easily modified to also return the maximum inconsistency, by sub-
stituting the averaging operators by the maximum operator. Therefore, indices may be 
divided into two groups: 

 mean-based (CI, CR, GWI, PLI, GCI), 
 extreme-based (KII). 
One advantage of the mean-based indices is that they take into account every pair- 

-wise comparison (and their changes). However, they do not provide (explicitly) infor-
mation about extremes. On the other hand, extreme-based indices express inconsistency 
in terms of the most inconsistent judgment, which can be useful when the most “erro-
neous” comparison is to be found and revised. One disadvantage of this class of indices 
is that all changes besides the most inconsistent comparison (a triad) are neglected. This 
may lead to the idea of a new (compromise) family of indices of the following form: 
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 compr mean extreme(1 ) , 0,1IC IC IC       

where a decision maker decides how he/she wants to capture both features by selecting 
an appropriate value of . Here, 0  yields an extreme index, and 1   a central 
based index. 

4. Axioms for inconsistency indices 

An inconsistency index should have some reasonable properties. Koczkodaj and 
Szwarc [16] introduced three axioms an inconsistency index must satisfy, while Brunelli 
and Fedrizzi [6] postulated five axioms. Two axioms are common to both papers. 

Below, the five axioms of Brunelli and Fedrizzi [6] are described with slight modi-
fications, along with the newly formulated axiom 6. 

Definition 3. An inconsistency index (ICI) is a real-valued function: 

ICI:  0,RA M    

or alternatively,  

ICI:  0, 1RA M   

A strong case for the latter “normalisation” of ICI values was provided in [17]. 

Axiom 1. CA M ( ) 0.ICI A   Axiom 1 states that consistent pairwise compari-
son matrices are identified by a unique real value of inconsistency. Usually, this value 
is set to 0, as zero inconsistency means consistency. 

Axiom 2. Let P denote a permutation matrix of order n and let .n n RA M   Then for 
all P and all Aʹ, such that ,TA P A P     the following condition holds: 

( ) ( ),ICI A ICI A P    

Axiom 2 states that the inconsistency index is invariant under the permutation of 
alternatives. In other words, changing the order of the alternatives should not result in 
a change in an inconsistency index. 
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Axiom 3. Let f be a continuous transformation: : ; , ; , 1.b
ij ijf a a i j b R b     

Let the matrix with elements b
ija  be denoted .bA  Then: 

( ) ( )bICI A ICI A  

Axiom 3 deals with the monotonicity of the intensity of preference: if preferences 
are intensified, then an inconsistency index cannot return a lower value. 

Axiom 4. Let CA M  and let at least one 1ija  for .i j  Let A  denote a matrix 
obtained from A by substituting the element 1ija  (and also 1jia  ) by the element 

,ija where , 0, 1.R      Then ( )ICI A  is a non-decreasing function for 1   
and a non-increasing function for 1  . 

Axiom 4 requires monotonicity based on a single comparison: the larger the 
change in a given entry aij (and aji respectively) from a consistent matrix, the more 
inconsistent the resulting matrix and, hence, the greater the value of an inconsistency 
index. 

Axiom 5. An inconsistency index is a continuous function of its entries. 
Axiom 5 ensures that there are no “jumps” or other discontinuities in the ICI values. 

Whether the presented set of five axioms is the best possible (optimal) choice is certainly 
open to discussion. 

One feature not captured by the five axioms given by Brunelli and Fedrizzi [6], or 
axioms given by Brunelli [7], is the problem of the existence of an upper bound on 
the value of an inconsistency index. If an inconsistency index is not bounded from 
above, it might be problematic to interpret its values (what information does a decision 
maker obtain when the value of such an ICI is, for example, equal to 984 669?).  

Therefore, it seems natural to require that an ICI possesses an upper bound. The 
need for an axiom on the existence of an upper bound was expressed, e.g., in [17]. 

Axiom 6. An ICI is bounded from above if and only if: 

; ( ) , RK R ICI A K A M      

Table 1 summarises which axioms are (not) satisfied by indices (5), (7–11). This is 
based on Brunelli and Fedrizzi [6], but has been extended to encompass the KII and RIC 
indices (introduced later), as well as axiom 6. 
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Table 1. Satisfaction of the axioms by inconsistency indices 

Index/Axiom A1 A2 A3 A4 A5 A6
CI Y Y Y Y Y N

GWI Y Y N ? Y Y
GCI Y Y Y Y Y N
PLI Y Y Y Y Y N
RIC Y Y N Y Y Y
KII Y Y Y Y Y Y

Y indicates that an index satisfies an axiom, N that an index 
does not it and that the result is open. Source: modified from 
Brunelli and Fedrizzi [6] by the author. 

5. A row inconsistency index for a pairwise comparison matrix 

The concept of this measure of inconsistency of a pairwise comparison matrix 
(PCM) comes from a geometrical point of view: the rows of a PCM can be considered 
as vectors in n-dimensional Euclidean space. If a PCM is fully consistent, then the 
PCM’s rows are collinear (they differ only by a multiplicative constant). When an in-
consistency appears, the rows will not be collinear any more, and their “deviation“ from 
collinearity can be expressed by the cosines of the angles between each pair of row 
vectors. 

Again, we set  0, .ija    

Let  1, ...,i i inr a a and  1, ...,j j jnr a a  be row vectors of a pairwise comparison ma-
trix RA M  of order n. Then the inconsistence index based on the rows of A is given as: 

Let ( ) .n n ij CA a M   Then the row inconsistency index RIC is given as follows: 

 

1

1

2 cos
1

( 1)

n n

ij
i j iRIC
n n




  



 (11) 

where cos i j
ij

i j

r r
r r







, and i jr r denotes the dot product of ri and rj.  

The RIC index is a “geometrically” based inconsistency index, which is equal to 1 
minus the arithmetic mean of the cosines of the angles between each pair of row vectors 
of a given PCM. Also, the values of this index are conveniently bounded in the interval 
 0,1  (which will be proved below), where the larger the value of the RIC, the greater 
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the inconsistency is. It should be noted that although the definition of the RIC is based 
on the row vectors, the use of the column vectors of the matrix A would be feasible as 
well. Now, some properties of the RIC index will be discussed. 

Remark 2. Since 0, , ,ija i j   the angle i j satisfies 0 90ij   for all ri and rj, 
and thus 0 cos 1.ij    

Proposition 1. CA M  RIC = 0. 

Proof. When A is consistent, its rows are collinear, thus 0, ,ij i j    and 
cos 1, ,ij i j   , which yields ICI = 0. 

If RIC = 0, then 

1

1

2 cos
1

( 1)

n n

ij
i j i

n n




  



. Since the codomain of cosine is  1,1  and the 

number of cosine terms in the numerator is ,
2

n 
 
 
 

 we immediately get cos 1, , .ij i j i   

Hence, the row vectors ir  are collinear, rank (A) = 1 and .CA M  

Proposition 2. 0RIC A   is not consistent. 

Proof. Assume that 0,RIC   then at least one cos 1,ij   which means that at least 
one 0.ij   Therefore, there are at least two row vectors that are non-collinear. Hence, 
rank (A) 2  and A is not consistent. 

Now assume that A is not consistent. Thus rank (A) 2,  so at least two row vectors 
are not collinear and at least one 0.ij   Therefore, at least one element cos 1,ij   
which yields 0.RIC  

Proposition 3. 0 1.RIC   

Proof. Since all the elements of the matrix A are positive, all the row vectors r lie 
in the first orthant of the space Rn. Hence, from (11) we get cos 0, , ,ij i j i     but also 

cos 1, , .ij i j i     Therefore, 

1

1

2 cos
0 1,

( 1)

n n

ij
i j i

n n




  



 and finally 
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1

2 cos
0 1 1

( 1)

n n

ij
i j iRIC
n n




    

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Proposition 4. RIC satisfies Axiom 1. 

Proof. This follows directly from Proposition 1. 

Proposition 5. RIC satisfies Axiom 2. 

Proof. This statement is obvious, as the average value of cos ij in (11) is computed 
from all the pairs of rows regardless of their order (all rows are treated equally). 

Proposition 6. RIC does not satisfy Axiom 3. 

Proof. (By counterexample): Let RA M  be the pairwise comparison matrix given 
as follows: 

1 0.1 0.15

10 1 0.3 ,

6.6666 3.3333 1

A

 
 
 
 
 
 

 RIC(A) = 0.047 

Let B be the pairwise comparison matrix obtained from the matrix A by squaring 
each entry of the matrix A: 

( 2)

1 0.01 0.0225

100 1 0.09 ,

44.4444 11.1111 1

bB A 

 
 
  
 
 
 

RIC(B) = 0.018. 

Thus, although the preferences expressed in the matrix B are “stronger”, the incon-
sistency index RIC returns a smaller value. 

Proposition 7. RIC satisfies axiom 4. 

Proof. RIC is increasing in the angle   between any two row vectors of A (all else 
fixed). The greater the change in one element (and its reciprocal) from a consistent ma-
trix, the larger the angle   between this row and the other (collinear) rows. Hence the 
RIC is larger as well. 

Proposition 8. RIC satisfies Axiom 5. 

Proof. The proof is obvious as the cosine function in (11) is continuous.  
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Proposition 9. RIC satisfies Axiom 6. 

Proof. 1RIC  follows directly from Proposition 3. 

6. Satisfaction of axiom 6 for a set of selected indices 

In this section satisfaction of Axiom 6 is discussed for selected inconsistency indi-
ces, namely for CI, CR, GWI, PLI, GCI and KII. 

Proposition 10. CI does not satisfy axiom 6. 

Proof. Consider a corner pairwise comparison matrix of order n. The characteristic 
polynomial of the matrix is:   3 2 1

max max 2 2n n x x        [16]. 

Since n N and max ,n   we have:  

  3 3 2 1
max max max 2 2n n x x          

and  

   1/31
max 2 2n x x        

From the last inequality, for n fixed and we obtain max ,   therefore CI is not 
bounded from above. 

As for the consistency ratio, the question of whether it is bounded from above or 
not cannot be answered without knowledge of the precise asymptotic behaviour of RI, 
which remains unknown, although, for example, Alonso and Lamata [2] provide a linear 
estimate of RI for increasing n. 

Proposition 11. GWI satisfies axiom 6. 

Proof. In the definition of GWI ( )ijA a  is a normalized matrix where the sum of 

entries in each column is equal to 1. Let 
1 1

1 .
n n

ij
i j

K a
n  

   Certainly, ,K GWI  because 

 1, 2, ..., .i n   Now, K is the mean of n column sums, where each sum is equal to 
one. Hence, K = 1 for all n. Therefore, K provides an upper bound for GWI as required. 
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Proposition 12. PLI does not satisfy axiom 6. 

Proof. (By counterexample): Consider a corner pairwise comparison matrix of or-
der n = 3. Then, PLI = x + 1/x, which is not bounded from above. 

Proposition 13. GCI does not satisfy axiom 6. 

Proof. (by counterexample): Consider a corner pairwise comparison matrix of order 
n = 3. In this case we get: 2 2

2 1 3 1 3 2ln ( / ) ( ) ln ( / ).GCI w w xw w w w    The first and third 
terms are constant, but the middle one is logarithmically increasing, and because the 
logarithmic function is not bounded from above, neither is GCI. 

Proposition 14. KII satisfies Axiom 6. 

Proof. This is obvious from the definition of KII. 

7. Numerical example. A corner pairwise comparison matrix 

To numerically illustrate the behaviour of selected indices, the corner pairwise com-
parison matrix C of order n = 3 (see below) will be examined. In the matrix C all of the 
entries, except for 1na x and 1 1/ ,na x  are set to 1, and , 1x R x  . 

1 1
1 1 1

1/ 1 1

x
C

x

 
   
 
 

 

The dependence of selected inconsistency indices on x is shown in Table 2, Figs. 1 
and 2. It should be noted that in this case PLI = x + 1/x. 

As can be seen from this comparison, RIC is the least rapidly increasing index in x, 
while PLI is the most rapidly increasing one. GCI, PLI, and CI grow almost linearly. 
The KII index grows rapidly for small x (lower than 5), and then levels off. 

Table 2. Comparison of inconsistency indices for various values of x 

x 1 2 3 4 5 6 7 8 9 10 100 
RIC 0 0.0474 0.1011 0.1391 0.1658 0.1853 0.1999 0.2113 0.2204 0.2279 0.292 
CI 0 0.027 0.068 0.109 0.147 0.184 0.218 0.25 0.28 0.309 1.428 

GWI 0 0.1595 0.2509 0.3113 0.3547 0.3875 0.4134 0.4344 0.4518 0.4666 0.6492 
PLI 0 0.5 1.3333 2.25 3.2 4.1667 5.1429 6.125 7.1111 8.1 98.1 
KII 0 0.5 0.667 0.75 0.8 0.8333 0.857 0.875 0.889 0.9 0.99 
GCI 0 0.1602 0.4023 0.6406 0.8634 1.07 1.2622 1.4414 1.6093 1.7676 7.0692 
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Fig. 1. A graphical comparison of the inconsistency indices RIC, KII and CI 

 
Fig. 2. A graphical comparison of the inconsistency indices GCI and PLI 

8. Conclusions 

The goal of this paper was to introduce the row inconsistency index (RIC) and to 
study its properties. Other aims of the paper included examining the existence of an 
upper bound on several inconsistency indices, and a comparison of these indices’ be-
haviour for a corner pairwise comparison matrix. 
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Further study may take a broader scope concerning the “quality” (consistency) of 
pairwise comparisons, a look beyond inconsistency indices in the form they are studied 
today. As indicated by several recent studies [3] or [19], even low values of incon-
sistency indices cannot guarantee satisfaction of several natural properties, such as 
preservation of the order of preference. Therefore, to evaluate (in)consistency in pair-
wise comparisons, some other approach might be necessary. 
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