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MULTIOBJECTIVE GEOMETRIC PROGRAMMING PROBLEM
UNDER UNCERTAINTY

Multiobjective geometric programming (MOGP) is a powerful optimization technique widely
used for solving a variety of nonlinear optimization problems and engineering problems. Generally, the
parameters of a multiobjective geometric programming (MOGP) models are assumed to be determin-
istic and fixed. However, the values observed for the parameters in real-world MOGP problems are
often imprecise and subject to fluctuations. Therefore, we use MOGP within an uncertainty based
framework and propose a MOGP model whose coefficients are uncertain in nature. We assume the
uncertain variables (UVs) to have linear, normal or zigzag uncertainty distributions and show that the
corresponding uncertain chance-constrained multiobjective geometric programming (UCCMOGP)
problems can be transformed into conventional MOGP problems to calculate the objective values. The
paper develops a procedure to solve a UCCMOGP problem using an MOGP technique based on
a weighted-sum method. The efficacy of this procedure is demonstrated by some numerical examples.

Keywords: uncertainty theory, uncertain variable, linear, normal, zigzag uncertainty distribution, multi-
objective geometric programming

1. Introduction

Geometric programming (GP) is one of the best techniques to solve non-linear op-
timization programming (NLOP) problems subject to linear and/or non-linear con-
straints. In 1967, Duffin, Peterson and Zener demonstrated the basic theories of geo-
metric programming [6]. Beightler and Philips [1] gave a full account of the entire
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current theory of geometric programming (GP) and numerical applications of GP to
real-world problems.

Multiobjective geometric programming (MOGP) is a powerful optimization tech-
nique developed by researchers to solve various non-linear programming problems sub-
ject to linear and non-linear constraints. MOGP has been applied by many researchers
to several optimization and engineering problems such as integrated circuit design, en-
gineering design, project management and inventory management. MOGP is a special
type of non-linear programming problem with multiple objective functions. In many
real-life optimization problems, multiple objectives have to be taken into account, which
may be related to the social, economic and technical aspects of real optimization prob-
lems. Changkong and Haimes [3] presented a multiobjective decision making problem.
Liu et al. introduced multiobjective decision making [14]. Ojha and Das [16] proposed
a method to solve specific types of multiobjective geometric programming (MOGP)
problems. Bishal [2] presented a fuzzy programming technique to solve multiobjective
geometric programming problems. Islam and Roy [10] considered multiobjective geo-
metric programming (MOGP) problems and their applications. Das and Roy [4] pre-
sented multiobjective geometric programming and its application in a gravel box prob-
lem. Over the last two decades, a tremendous number of research papers have expanded
the theory and practice of multiobjective decision making problems.

Uncertainty theory is a new branch of mathematics founded by Liu [13]. Liu pro-
posed an uncertain stock model and a European option price formula [13]). Following
this, Peng and Yao [19] studied a new uncertain stock model and some option price
formulas. Also, Liu [11] and Wang et al. [22, 23] applied uncertainty theory to uncertain
statistics. Risk analysis, reliability theory analysis, and control under uncertainty were
presented by Liu [11, 12] and Zhu [27]. Li et al. [9] applied risk as a non-negative un-
certain variable and mainly discussed the premium for uncertain risk within the frame-
work of uncertainty theory. Han et al. [7] showed that uncertainty theory can serve as
a powerful tool to describe the maximum flow in an network under uncertainty. Ojha
and Biswa [17] presented the e-constraint method for solving multiobjective geometric
programming problems. Ojha and Ota [18] solved multiobjective geometric programming
problems with Karush—Kuhn—Tucker conditions using the &constraint method. Ding [5]
illustrated the maximum flow problem under uncertainty and formulated the maximum
flow and the o-maximum flow in an uncertainty based framework. Shiraz et al. [20, 21]
considered geometric programming problems with normal, linear and zigzag uncer-
tainty and fuzzy chance-constrained geometric programming under the possibility, ne-
cessity and credibility approaches.

In this paper, we use uncertain variables (UVs) to account for the unavoidable
vagueness of the parameters characterizing real-world MOGP problems. More pre-
cisely, we define three chance-constrained MOGP models that can be implemented
when the coefficients are expressed as uncertain variables (UVs) with linear, normal or
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zigzag uncertainty distributions. We show that all of the proposed MOGPs under uncer-
tainty can be transformed into conventional MOGPs, allowing us to calculate the opti-
mal value by using their dual forms. The paper develops a procedure to solve
a UCCMOGP problem using a technique for solving MOGPs based on a weighted-sum
method.

In Section 2, we present some basic definitions on uncertainty spaces and uncer-
tain variables (UVs). In Section 3, we construct a variant of the uncertain chance-
constrained multiobjective geometric programming (UCCMOGP) model and show
how it can be converted into a conventional MOGP in the cases of linear, normal and
zigzag uncertainty distributions. In Section 4, we present results for numerical exam-
ples illustrating the efficacy of the proposed approach. Finally, in Section 5, we dis-
cuss conclusions.

2. Preliminaries and definitions

Definition 2.1. Let /"be a universal set and L be a g-algebra on I". Then a set function
M: L — [0, 1] is called an uncertain measure iff it satisfies the following axioms.
Axiom 1 (normality). M(1) = 1.

Axiom 2 (self-duality). VA ", M(A)+M(A)=1.
Axiom 3 (countable sub-additivity). V countable sequences of A, (i = 1, 2, ..., ©)

countable sequence M (0 A j < iM (A).

i=1 i=1

Note that Axioms 1-3 also imply monotonicity (i.e., M(4:1) < M(A2) whenever A1 < A,).

Definition 2.2. The triplet (7, A, M) is called an uncertainty space iff L is a o-algebra
on /"and M is an uncertain measure.

Definition 2.3. A UV ¢ is non-negative iff {M(£>0)}=0 and positive iff
M (E<0)}=0.

Definition 2.4. Let &,&,,...,¢&, be UVs, then VAT (§+& +...+&)A1
A=8 ()& (4) &, (4), (A)+& (A)+..4&, (A) and (G- £,)

Proposition 2.1.If &, &,, ..., §,are UVs and fis a real-valued measurable function,

then f{ (&, &,, ..., £,) is an UV. In particular, sums and products of UVs are UVs.

Definition 2.5. Given a UV ¢, the function ¢, : IR — [0, 1], defined by ¢.(x):
=M{ & <x} for every x €IR, is called the uncertainty distribution (in short: UD) of &.
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Definition 2.6. A UV &is called linear iff it has a linear UD. Symbolically:

0, x<a

. (x)z Z_a , a<x<h
—a

I, x>bh

To indicate that £ has a linear UD (Fig. 1), we shall write & L(a, b).

/
b.(x)

Fig. 1. Linear UD Fig. 2. Normal UD

Definition 2.7. A UV £is called normal iff it has a normal UD. Symbolically:

¢ (x) =[1+6Xp [%Dl , x20.1

To indicate that £ has a normal UD (Fig. 2), we shall write &: N(e, o) .
Definition 2.8. An UV ¢&is called zigzag iff it has a zigzag UD. Symbolically:

0, x<a
xX—a
¢§ (X)Z m, a<x<b
XHe=2b <o
2(c—b)

To indicate that £ has a zigzag UD (Fig. 3), we write & Z(a, b, ¢).
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¢.(x)
1.0

0.5

Fig. 3. Zigzag UD

Definition 2.9. Let £ be a UV. The expected value of £ is defined by

E(f):TM(§>r)dr—j-M(§<r)dr

provided that at least one of the two integrals is finite. It follows that

0

0
J. 1—¢§ dr—.[qﬁé(r)dr
0 —o0
3. Multiobjective geometric programming (MOGP) problem
A multiobjective geometric programming (MOGP) problem can be written as
FindXz(xl, Xyyees X, )T (D
So as to

Pio

Minimize f10 ch()ll ka“°

P20

Minimize f,, (x ZCZOII |xk““
i=1

Minimize f,,, Zcmoll |x”" 10
=1
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subject to

ZC”H)C Gi<e ,r=1,2,..,q¢,x%>0,k=1,2,..,n

i=1 k=1

where cjo;, are positive real numbers forall j=1,2, ... m, i =1, 2, ..., ps; ajoi and Qi
—real numbers forall k=1,2,....n,j=1,2,...,m,i=1, 2, ..., ps; pjo — number of terms
present in the joth objective function, p. — number of terms present in the rth constraint,

— boundary value for the rth constraint. In the above multiobjective non-linear pro-
gramming model, there are m minimizing objective functions, ¢ inequality type con-
straints and # strictly positive decision variables.

In this section, we develop an MOGP model under uncertainty whose associated
chance-constrained version admits an equivalent crisp formulation. First, we transform
the conventional MOGP problem in Eq. (1) into an MOGP problem under uncertainty,
where Eois ¢ j=1,2,..,m;i=1,2,.., p-are UVs. The model is:

. T
Find Xz(xl, Xys e xn) 2
So as to
Pro
Minimize f;, (x choll |x““°'
P2
Minimize f5, (x ZCZOII Ix““"’
i=1
Pmo
km0i
Minimize f,, Zcmm | ka
subject to

Py n
-~ i — —
= E crl.l |xk M<e r=1,2,.,q9,k=12,.,n
=l k=l

where EjOi — uncertain positive real numbers for all j=1,2, ... m;i=1, 2, ..., p,
¢,; —uncertain boundary value for the 7th constraint.

In the above multiobjective non-linear geometric programming model, there are
m minimizing objective functions, ¢ inequality type constraints and » strictly positive
decision variables.
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Based on the model defined by Eq. (2) and the related constraints, we can formulate
the following generic multiobjective GP model, which is a variant of the uncertain
chance-constrained multiobjective geometric programming (UCCMOGP) model:

Find X = (x,, %, ., X, ) 3)
So as to
Minimize E(fw ) icm,l—[xk“o
i=1
Minimize £ ( fro (x ) f“czolnxk“‘”
i=1
Pmo
Minimize E ( ) Zcmm ka om0t
subject to
M(f, ( [chnx“‘ <ec, ]Za, r=1,2,.,q, x, >0, k=1,,...n, a€l0, 1]
i=1

3.1. UCCMOGP model with linear uncertainty distributions
Let the coefficients € joi ,C,; in Eq. (3) be independent positive linear UVs. That is to say,

5. a b b ~ . a b . a b
Groi L (s el ) o With 0 <0<y, <y, and &, : L (i, cly ), with 0<cji <c.

Lemma 3.1. Let égl (i=1, ..., n) be independent linear UVs, that is to say, gg, L ( a;, b. )

with a; < b;. Let U; be non-negative variables. Then for every & E](), 1[ ,

M[anfUiSl]Za@Zn:((l—a)ai+abi)UiSl

i=1 i=1

Lemma 3.2. The expected value of a linear UV é; :La,bisE (5 ) =[(a + b)/2].

From Lemma 3.2, we obtain the following deterministic objective function for the
UCCGP problem proposed in Eq. (3):
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Pjo n Pjo

n Pjo a b n
C.n. +C:n:
~ joi | _ ~ Aioi __ JOi JOi joi »
E EchiI ka o= EE(chi)I |xk’ = E [TJ X j=L2, ., m
i=1 k=1 i=1 k=1

i=1 k=1

Moreover, from Lemma 3.1, the constraints in Eq. (3) admit the following equiva-
lent deterministic form:

Vi=l,..,n, M {i&riﬁxi’”' <c, ] >a o i ((l—a Y +act, ) ﬁx,‘:k” <1

i=1 k=1

Thus, when the coefficients are UVs endowed with linear distributions, the model
corresponding to Eq. (3) is equivalent to:

Find X =(x;, X,, ..., %, )T (4)
So as to
P a b n
Minimize E(fm (x)) _y [M] 10
i=1 2 k=1
P ca ) +Cb ) n
Minimize E ( ](20 ()C)) = [MJ )CZ“O"
i=l 2 k=1
Pm a b n
Minimize E (fm0 (x)) _ Z(i [ Cnoi er Cnoi J X
i=1 k=1
subject to:
Py n
Z((l—a) cr +acfi)Hx,f"f” <L r=L2,..,q, x,>0, k=12,..,n, ae]O, 1[
i=1 k=1

Solution of MOGP problem by the weighted-sum method

m
Let w; =| w;:weR", w, >0, ZW_,- =1 | be a set of non-negative weights. Using
J=1

the weighted sum technique, the above multiobjective model can be written as,
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MinimizeE(f(x))ziwj ( ) i %[ 70i ;‘CJOIJ n xzzk,of
J=1 k

j= i =1

Hence, the multiobjective optimization problem under uncertainty reduces to a sin-
gle-objective crisp geometric programming problem as follows,

Minimize E( ) 3 w]i[ joi ™ ]Ol JHx%"’ 5)

Jj=1 i=1

subject to

Pr

Z((l—a ch+ack )Hx“""<1

i=1

X, >0,ae]0,1[, r=1,2,...,q9, k=1,2,..,n

Definition 3.1. A feasible solution x” is said to be a Pareto solution to the multiobjective
programming problem under uncertainty (5), if there is no feasible solution x such that

E[ f(x)]SE[ f(x*)},and E[ f(x)]<E[ f(x*)}

for at least one index i.

Definition 3.2. A feasible solution x” is said to be a weak Pareto solution to the multi-
objective programming problem under uncertainty (5), if there is no solution x such that

E[_f(x)]<E[f(x*ﬂ

Theorem 3.1. The solution of the MOGP problem (4), generated by the weighted
sum method (5) is Pareto optimal if W; >0 forall j=1,2,..,m

Proof. Let x” be the solution of the MOGP problem (5), obtained by minimizing the
m Pjo l+c , n
function ( ZW E( fjo ] ZW Z[ /0 3 s Hx,fkf(’i. Obviously, it fol-
i k=1

lows that Ef (x ) <E(f (x), VX€X, which implies that
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n

m Pjo c m Pjo c n
3053 Ry (R 315 s e T
= k=1

Jj=1 i=1 k=1 Jj=1 i=1

m Pjo

I e

(e = )20 (©)

k=1

Suppose the solution x" of the problem (4) is not Pareto optimal. Then there exists
some solution x” of the problem (4) satisfying Ef, (x") < Ef;, (x* ) , which implies that

Ef o (x")—Ef (x*)<0forall j=12,...m

Pjo n Pijo a b n
- 101 + o , = | Cjoi €00 *ay0;
:>Z | kaak/Oi_Z AL | ka <0
k=1 i=1 2 k=1
Pjo a

= Z jOI /01 H(xk X ) <0

By summing these inequalities and considering the assumption of the theorem that
the weights w; are all positive, we obtain

m Pjo n

+C *
jOl joi 1%50i Ajoi
E Wj E T ()Ck — X <0
j=1 i=l

k=1

This inequality stands in contradiction to statement (6). Therefore, the solution x" is
a Pareto solution for w; >0.

Theorem 3.2. If x" is a Pareto-optimal solution of a convex multiobjective optimi-
zation problem, then there exists a non-zero positive weight vector w such that x” is
a solution of the problem given by (5).

For the proof, see Miettinen’s book on nonlinear multiobjective optimization [15].

3.2. UCCMOGP model with normal uncertainty distributions

Let the coefficients ¢ in Eq. (3) be independent positive normal UVs, that is

jOl’ ri

), and ¢, N(c o, )Wherec

to say, C N(Cj(nao'jol- " 10i2Ci0 jo; @nd o, are all posi-

tive real Values.
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Lemma 3.3. Let .’fl (i =1, ..., n) be independent normal UVs, that is to say,

E:N (&, o0,) where &, o, are all positive real values. Then for every a € ]0, 1[ ,

M(Zn:éUileZab 3 (§i+0fﬁ 1og(l_ijj U <1

i1 T a

Lemma 3.4. The expected value of a normal UV f :Ne, cis E (f) =e.

From Lemma 3.4, we obtain the following deterministic objective function for the
proposed UCCGP problem given by Eq. (3):

Pjo n Pjo n Pjo n
~ Ao ~ Qi Ao .
E ZCJOinkk/O - ZE(CJOi)kak/O = ZCjOi xkklo , J=L2,..,m
i=1 k=1 i=1 k=1 i=1 k=1
Moreover, from Lemma 3.3, the constraints in Eq. (3) admit the following equiva-

lent deterministic form:

Vi=l,..,n

)Z n Pr n
M (ZE”Hx,fk” <c, ] z2as Z [cﬁ + Gr;;/g log [ " fla )J l;lxgk,-i <1

",
i=l1 k=1 i=1

Thus, when the coefficients are UVs endowed with normal distributions, the model
corresponding to Eq. (3) is equivalent to:

Find X =(x,, Xy, . %, ) 7)

So as to
Pio n
Minimize £ ( fro (x)) = z (o) Hx:‘moi
i=1 k=1
P2o n
Minimize £ ( o ( x)) = z (CZOi ) szk,-zo,
i=l k=1

Pmo
i=

Minimize E( £, ()= (¢,0:) ﬁx;wmuf
k=1

1
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subject to

z( FEECIW nﬁx,gk,.,.sl

im1 —a) )%

x>0,r=1,2,..,9,k=1,2,..,n, ae]O, 1[

Solution of the MOGP problem by the weighted-sum method

Letw = [ w;iweR", w; >0, ij = 1} be a set of non-negative weights. Using the
J=

weighted sum technique, the above multiobjective model can be written as

m Pjo

Minmie 3, (c0) [t

j=1 =l

Hence, this multiobjective optimization problem reduces to a single-objective crisp
geometric programming problem as follows:

m Pjo

Minimize » w, > (c0; ) Hx"‘w (8)

j=l =l

subject to

x>0,r=1,2,...,9,k=1,2,...,n, ae]O, 1[
3.3. UCCMOGP model with zigzag uncertainty distributions

: Ci0i5Ci . . o .
Let the coefﬁc1ents J0P™ri i Eq. (3) be independent positive 21gzag UVs. That is
to say, ¢; Z(C,oza J0i> Cloi)» With 0 <cj cfol, cjor and ¢, 1 Z(cy; ,o;a Clor)» With

0<670i> cb. ., ¢% (Fig. 3).

j0i> > j0i

j0i»

Lemma 3.5. Let égl (i =1, .., n) be independent zigzag UVs, that is to say,
&:Z (a,b, ¢, )with a,<b,<c,. Let U, be non-negative variables. Then for every
ael0,1]
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n

> ((1-2a)a;+2ab,) U, <1, if @€]0,0.5]
M( ~[Ui£1j2a<:> .

n

Y ((2a-1) ¢ +2(1-a) b ) U; <1 if €]05,1]

i=1

Lemma 3.6. The expected value of a zigzag UV (f :Z(a,b,0)is E ((f )=[(a+2b+c)d)].

From Lemma 3.6, we obtain the following deterministic objective function for the
proposed UCCGP problem given by Eq. (3):

Pjo Pjo Pjo +2C
aA 0i Aoi jOl ]01 jOl Qo .
{2 /01|| 7 } EE(cjolllx’ —E ||x’,]—1,2,...,m
i=1

i=1

Moreover, from Lemma 3.5, the constraints in Eq. (3) admit the following equiva-
lent deterministic form:

Vi=l,...,n

k=

Dy n
~ Qs
M E Cil X <c,
i=1 1

o

((I—Za)c +2ac) )Hxxak <1, if @ €]0,0.5]

i k=1

i((20!—1)Cfi+2(1—a)c”,l.)f[xgk~ <1, ife]0.5,1]
i=1

k=1

oS

Thus, when the coefficients are UVs endowed with zigzag distributions, the model
corresponding to Eq. (3) is equivalent to:
For &< 0.5 we have

Find X =(x, %, .0, X, ) 9)

So as to

Pio a b c n
. Cio: +2¢: + Cpo; ,
Minimize E (fm (x)): E { 10i 410[ 10i J X ko
i=1 k=1
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4 k=1

P2 a b c n
o Coo; +2C5; + Co; _
Minimize £ ( fzo(x))z E [ 20i 20i zoljl leszo:

Pmo a b c n
o CooiT2C, 0 +Choi _
Minimize £ (fmo (x)) — [ mOi m0i T Cmoi JHxl?kmOI

subject to

Pr

Z((I—Zcx o +2ac”)Hx“‘ <1

i=1

Xx>0,r=1,2, ., q,k=1,2,...n, a€]0,1]
For o> 0.5 we have

Find X =(x, x,, ..., X, )T (10)
SO as to
Minimize E(f10 (x)) = Z[MJH @0;
i1 =
i A i +2Czo‘ + 0 | T T
Minimize E ( S (x)) = Z i ; i i X
i=l k=1
CL L Coroi +2co+cn0 e
Minimize E ( f,,, (x))=>"| = Z £ 0t | T e
i=1 k=1
subject to

i( 200 -1 C[+2(1—a)cfi)f[xgm <1
k=1

i=1 =
%>0,r=1,2, ., q, k=1,2,...n, @€]0,1]
Solution of the MOGP problem by the weighted-sum method
Letw=(w,:weR", w, >0, ij =1) be a set of non-negative weights. Using the

j=l1
weighted sum technique, the above multiobjective model can be written as,
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m Pjo n
]01 + 2c]01 i

. o o
Minimize sz So I Ix,fk/‘]
J 4

j=1 =l k=1

Hence, this multiobjective optimization problem under uncertainty reduces to a sin-
gle-objective crisp geometric programming problem:
For < 0.5 we have

m Pjo
]01 +2C}01

Minimize »w,>" Cio [ T (11)

j=1 =l k=1

subject to

Pr

Z((l_za)cfiJanCZ)ﬁx,‘fk” <1

i=1 k=1

X%>0,r=1,2, ., q,k=1,2,..,n, a€]0,1]
For a> 0.5 we have
m o B Jol+2c +Cor |

Minimize zwjz "

j=1 =l

X (12)

k=1

subject to

Py

Z((Za—l)cfi+(l—2a)cfi)ﬁxkam <1
k=1

i=l1

%>0,r=1,2,.,q,k=1,2,..,n, a€]0,1]

4. Numerical examples

Optimization is the process of finding the point that minimizes an appropriately
defined function. More specifically:

e A local minimum of a function is a point where the value of the function is smaller
than or equal to the value at nearby points, but possibly greater than at a distant point.

e A global minimum is a point where the value of a function is smaller than or equal
to the value at all other feasible points (the numerical examples which are given here
give the global optimal).
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Global minimum

Local minimum
Fig. 4. Local and global minima

We now give some numerical examples to show the efficacy of the MOGP models.

(13)

C101 -
t C102X%, X3
X1 Xp X3

min f, (x)=

. __Cool ~ ~
min f, (x)_m such that &, .x,x, +&,x,%; <4, X, X,, X3 >0
1X2X3

4.1. Example for linear uncertainty distributions
o1 2L (30,50), ¢, 1L (30,50), &y, : L (700,900),
¢, :L(0.8,1.2),¢, :L(1.6,2.4)

Thus the UCCMOGP problem is

. 40
min lo(x)zxxx +40x,x,
1%2%3
(14)

800

X1 X X3

min f, (x)=

such that
(0.8(1-a)+1.2a) xx, +(1.6 (1-a ) +24a ) x,x; <4, x, x,, 5, >0

From Eq. (5), the problem given by Eq. (14) becomes the following deterministic

weighted-sum MOGP:

4
800 _ Ow, +800w, 40wy, (15)
XXy X3

40 +40x,x, ] +w,

min 1 (x)=w (
XXy X3 XX X3
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such that
(0.8(1-a)+1.2a) xx, +(1.6 (1-a ) +24a ) x,x; <4, x, x,, x>0
Here, DD:4_(3+1):O'

The dual multiobjective geometric programming problem (DMOGPP) correspond-
ing to (15) is

o1 S0z 5
maxd(5)=(40w1+800w2j [40le [(0.8(1—a)+1.2a)]

é‘01 502 4'51 1

(01.6(1-a)+24a))"
6(l-«a Aa
XL J (511_'_512)(511*'512)

46,
such that

é‘014‘502:1’ —501+§11+§12=0, _5014'5024'511:0
=00ty +61, =0, w+w, =1 &y, &y, 6y, 65 >0

Solving the above normal and orthogonal conditions, we have

2 1 1 1
501255 502=§a 611:5, 512=§

From the primal-dual relation, we obtain

40 800
S O 50d (8). 40wx,x, =S, (S)
X)X X3
08(l—-a)+1.2a ) xx S l6(l-a)+24a ) xx S
172 _ 11 3 _ 12
4 Si+y 4 i + 0

and the corresponding optimal solution is

v = w; + 20w, " v —2r oy = 2
Pla(e(l-a)+24a)w | T T T (L6 (1-a)+24a) ) x
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Table 1. Optimal solution under linear UDs

Weight Optimal values

a Primal variables | Objective functions
Wl owy | X X, x, Sor(x) S (%)
0.1 109]0.38]590[2.95]| 702.25 | 120.96
02105]05]0.79]2.88|1.44| 178.10 | 244.18
09 10.1]1.48|1.54]0.77 | 70.22 455.84
0.1 109]0.365.74]|2.87 | 66570 | 134.90
04105]05]0.74]2.80|1.40] 170.59 | 275.79
09 ]0.1]139]1.50]0.75| 70.58 511.59
0.1 109]0.34]5.58[2.79| 630.28 | 151.14
06]05]05]0.71 272 [1.36| 163.20 | 304.60
09 ]0.1]132]146]0.73 | 71.06 568.64
0.1 109]033]544[2.72| 600.06 | 163.84
08]05105]0.67]2.66]1.33| 15839 | 337.51
09 ]0.1]1.26]142]0.71 | 71.82 629.76

4.2. Example for normal uncertainty distributions
G N(40,4),6,, : N(40,4),8,, : N(800,80),é, : N(1,0.1),&, : N(2,0.2).
Then the UCCMOGP problem is

40

min_ IO(X):XXX +40x,x,
172743 (16)
. 800
mmfzo(x):xxx
1742773

subject to

1+ M1 (Lj XX, + 2+0'2\/§log( 4 ) xx;, <4
l-a Vs l-a

From Eq. (8), the problem given by Eq. (16) becomes the following deterministic
weighted-sum MOGP:

Min f(x)zwl(

such that

800 40w, +800w,

XXXy XX X5

+40x, x, ] +w, +40wx,x;  (17)

XXy X5
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[1+0'1\/§10g( = j]xlx2+[2+o'2\/§10g( a j]xlxg <4, X,%,% >0
~ r

Here, DD=4—-(3+1)=0.
The DMOGPP corresponding to (17) is

511
0.3 a
o o | | 1+ log|
T
maxd () = (40w1 + 800w2j ( 40le

50 1 502

(2 N 0.2”«@ zog(l fan )

% 4512 (5” +5]2)(51|+5|2)

44,

such that
501 +602 =1, _501 +511 +512 =0, _501 +§02 +511 =0
—0y + 0y, 0, =0, w+w, =1, 5,6y, 6,,6,>0

Solving the above normal and orthogonal conditions, we have

2 1 1 1
501=§a 502=§’ é‘nzga 51225

From the primal-dual relation, we obtain

40w, + 800
e _ 5,d(8), 40wx,x, = 5,,d ()
X, X, X,
1+0‘1\/§10g & XX 2+0'2\/§10g & XX
1712 173
4 -« 6, T -« S,
4 5]1 +6‘12 , 4 6‘1] +é‘|2

and the corresponding optimal solution is

w, +20w, 2

4(2 + 027;/5 log(lfaj}vl ) ) (2 + 027;/5 log(1 fanxs

X3 =
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Table 2. Optimal solution under normal UDs

Weight Optimal values

a Primal variables | Objective functions
Wl owy | X X, x, Sor(x) S (%)
0.1 109]037]5.80[{290]| 679.23 | 128.55
02105]05]0.76]284|142| 17436 | 261.02
09 10.1]1.42]1.52]0.76 | 70.59 487.69
0.1 109]0.385.70|2.85| 656.28 | 129.59
04105]05]0.78]2.78 139 167.84 | 265.42
09 ]0.1]146]1.48]0.74| 68.49 500.32
0.1 109]0.39]5.62|2.81 | 638.18 | 129.89
06]05]05]0.79[2.74 137 | 163.64 | 269.77
0910.1]148]1.46[0.73| 67.99 507.17
0.1 109]0.39]5.52[2.76 | 616.14 | 134.64
08]10.505]0.80[2.70|1.35] 159.52 | 274.35
09 ]0.1]1.50|144]0.72| 67.19 514.40

4.3. Example for zigzag uncertainty distributions
o1 Z(30,40,60), ¢, : Z(30,40,50), &y, : Z(700,800,1000)

&,:2(08,1.0,12),é,:7(1.6,2.2.4).

For o< 0.5 we have: The UCCMOGP problem is

42.5
XX X3
825

XXy X3

min f,,(x)= +40x,x,

(18)

min f,, (x)=

subject to
(0.8(1—-2a)+1.0(2a))x,x, +(1.6(1-2a) +2.0(2a)) x,x, <4, x,,x,,%, >0

From Eq. (11), the problem given by Eq. (18) becomes the following deterministic
weighted-sum MOGP:

42.5

XX, X,

825  42.5w, +825w,

XX, X, XX, X,

+40wx,x, (19)

min f (x) = wl(

+40x,x, J +w,
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such that
(0.8(1-2a)+1.0(2a))x.x, +(1.6(1-2a) +2.0(2a)) x,x; <4, x,,x,,x, >0

Here, DD=4—-(3+1)=0.
The DMOGPP corresponding to (19) is

42.5w, +825w, T‘“ (40w1 J% [(0.8(1 ~2a)+ 1.0(205))}5”

maxd(&) =
0, ) 49,

01 02

S

01.6(1-2 2.0(2 -

X[( ( a)+ ( 0!))] (é‘ll_i_é‘lz)(bn 52)
40,,

such that
501 +502 =1, _501 +511 +512 =0, _501 +502 +511 =0
—0y + 0y, 0, =0, W +w, =1, 6,,,6,,,6,,,0,, >0

Solving the above normal and orthogonal conditions, we have

From the primal-dual relation, we obtain

42.5w, + 825w,

XXy X5

=6,d(5), 40wx,x, =35,,d ()

08(1-2a)+1.0(2a) 5,  16(1-22)+2.0(22) &,

4 R 4 8, +6,

and the corresponding optimal solution is,

1/3

42.5w, + 825w,
40 2

= , :2 . =
. 4(1.6(1-2a)+2.0(2a))w, T TeA (1.6(1-2a)+2.0(2a))x,

105
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For a> 0.5, we have: The UCCMOGP problem is

. 42.5
min lo(x):xxx +40x,x,
172773

(20)
825

XXy X5

min f,,(x)=
such that
(12(2a-1)+2(1-a)1.0)x,x, +(24(2a -1)+2(1-a)2.0) x,x, <4, x,,x,,x,>0

From Eq. (12), the problem given by Eq. (20) becomes the following deterministic
weighted-sum MOGP:

42.5

XXy X5

825  42.5w,+825w,

XXX XXy Xy

+40w,x,x;  (21)

mmf@jzw(

+40x,x, j +w,

such that
(12(2a-1)+2(1-a)1.0)x.x, +(2.4(2a—1)+2(1-a)2.0)x.x, <4, X, x,,x,>0

Here, DD=4-(3+1)=0.
The DMOGPP corresponding to (21) is

425w, +825w, J" [40w1 )" ((1.2(205 “1)+2(1-a)1 .O)J‘g”

501 502 4'é‘l 1

nmxd(5):(

25
24(2a -1 2(1—-a)2.0
X(( ( a )4);: ( a) )J (é‘ll+é~12)(511+512)
12

such that
é‘01 +602 =1, _501 +§11 +§12 =0, _501 +§02 +511 =0

o)

02>

0

—0p +0, +0,=0, w+w, =1, §, e

01>

5,>0
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Solving the above normal and orthogonal conditions, we have

From the primal-dual relation, we obtain

42.5w, + 825w,

XX X5

=5,d(5), 40wx,x; =8,,d (5)

122a-1)+2(1-a)1.0 5,  24(2a-1)+2(1-a)2.0

__ %

4 TS 4
and the corresponding optimal solution is,

42 5w, +825w,
40

X, = , X, =2x;

4(24(2a-1)+2(1-a)2.0)w,

2
(24(2a-1)+2(1-a)2.0)x,

1 =

Table 3. Optimal solution under zigzag UDs

Weight Optimal values
a & Primal variables | Objective functions

* *

W wm xl* Xy X3 .f()*l (x) fo*z (x)
0.1 [0.9]0.38[596|298 | 716.73 122.24
02]105]05]078[290|145] 181.16 | 251.53
09 10.1]146|1.56|0.78 | 72.60 464.39
0.1 10.9]0.36[5.80]290]| 679.82 136.25
04/105]05]074(282|1.41] 173.49 | 280.38
09 10.1]137[1.52]0.76 | 73.06 521.29
0.1 [0.9]0.34|5.64|2.82]| 644.05 152.56
0.605]05]0.70 276 | 1.38 | 168.29 | 309.43
0.9 [0.1]1.30]148]0.74| 73.66 579.45
0.1 [0.9]0.35[5.50[2.75] 613.03 155.84
0.8/05]05]0.72[2.68|1.34] 160.08 | 319.07
09 10.1]134[144]0.72| 69.94 552.58

S 65
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5. Conclusions

Multiobjective geometric programming (MOGP) is a powerful optimization tech-
nique widely used for solving a variety of nonlinear optimization problems, particularly
in engineering. Conventional MOGP models assume that the parameters are determin-
istic and crisp. However, the parameters or coefficients in real-life MOGP problems are
often imprecise and subject to fluctuations. Therefore, we have approached the problem
of formalizing and implementing imprecise and non-deterministic parameters using un-
certainty theory. There exists an ample literature on MOGP under uncertainty and its
applications to problems (either chance-constrained or not) whose coefficients are fuzzy
numbers, fuzzy variables or random variables. However, to the best of our knowledge,
no previous study has dealt with the formulation and/or solution of MOGP problems
where the coefficients are given by uncertain variables (UVs). In this paper, we have
introduced an uncertain chance-constrained multiobjective GP (UCCMOGP) model and
proposed a method of solution that applies to three of the most commonly used uncer-
tainty distributions: we assumed the coefficients to be uncertain variables with linear,
normal or zigzag uncertainty distributions. We proved that the corresponding uncertain
chance-constrained multiobjective geometric programming (UCCMOGP) models can
be transformed into conventional multiobjective geometric programming (MOGP)
problems with crisp coefficients and, hence, an optimal solution can be found using the
duality algorithm. We have shown the efficacy of the proposed model through three
numerical examples. We believe that the framework proposed in this paper contributes
to shedding light on the applications of MOGP to concrete problems, opening the way
to further research in engineering and production management.
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