
O P E R A T I O N S R E S E A R C H A N D D E C I S I O N S
No. 4 2017
DOI: 10.5277/ord170402

Cherki DAOUI1
Dimitri LEFEBVRE2

CONTROL DESIGN FOR UNTIMED PETRI NETS
USING MARKOV DECISION PROCESSES

Design of control sequences for discrete event systems (DESs) has been presented modelled by
untimed Petri nets (PNs). PNs are well-known mathematical and graphical models that are widely used
to describe distributed DESs, including choices, synchronizations and parallelisms. The domains of
application include, but are not restricted to, manufacturing systems, computer science and transporta-
tion networks. We are motivated by the observation that such systems need to plan their production or
services. The paper is more particularly concerned with control issues in uncertain environments when
unexpected events occur or when control errors disturb the behaviour of the system. To deal with such
uncertainties, a new approach based on discrete time Markov decision processes (MDPs) has been pro-
posed that associates the modelling power of PNs with the planning power of MDPs. Finally, the sim-
ulation results illustrate the benefit of our method from the computational point of view.

Keywords: discrete event systems, Petri nets, control design, Markov decision process, value iteration
algorithm

1. Introduction

Performance in most manufacturing settings is affected by operative decisions re-
lated to job scheduling, such as: a) selection of jobs in a queue, b) priority when choos-
ing a machine for processing a job (among parallel machines), and c) assignment of
resources in the execution of a production plan. Such decisions have a significant impact
on the efficiency of a system, operational costs and fulfilling orders, and are frequently

1Sultan Moulay Slimane University, TIAD, Avenue Mohamed V, Quartier Taqaddoum 591-23000

Béni Mellal, Morocco, e-mail address: daouic@yahoo.com
2Normandie Université, UNIHAVRE, GREAH, 76600 Le Havre, 25 rue Philippe Lebon, France, e-mail

address: dimitri.lefebvre@univ-lehavre.fr

 C. DAOUI, D. LEFEBVRE 28

taken intuitively by operators, based on their experience. In order to support this
decision process and guarantee the efficiency of a system, computational applications
need to be developed. Such applications should be able to (i) provide modelling aids,
(ii) apply scheduling techniques and (iii) define a production plan.

The design of control procedures for the scheduling and planning of discrete event
systems is a major challenge in numerous domains such as flexible manufacturing,
communication, computer science, transportation, robotics, biotechnologies, and business
[24]. One of the major challenges faced by controllers is to provide more efficient
decisions even when the environment of a system is uncertain and when its behaviour
may be disturbed by unexpected changes, both internal and external. In this paper, we
consider the particular problem of controlling discrete time event systems in uncertain
environments that include control errors, as well as unexpected and uncontrollable
events. Petri nets (PNs) are used to model the system and its uncertain environment and
a MDP-based control approach is proposed to generate the control actions.

On the one hand, the potential of PNs for analysing and modelling complex systems
has encouraged its use in the design of control systems for DESs, particularly for
scheduling problems applied in the field of manufacturing systems 3, 15, 22, 23, 27.
The motivation to use Petri nets as a modelling tool is that such models are physics-
-based and provide a realistic and comprehensive representation of the systems
considered. They are modular and flexible in the sense that they can easily be updated
when the system specifications change. In addition, the proposed extension of PNs takes
into account not only the system operations but also the faults, as well as processes of
aging and degradation that progressively lead to system failure. Another important
advantage of Petri nets is that specific properties such as conflicts, deadlocks, limited
buffer sizes, and constraints on resources can be easily represented within a single
formal model [26]. This model is also suitable for control issues. In earlier works, the
authors propose a model for a predictive approach to control issues in DESs [18–21].

On the other hand, a Markov decision process (MDP) is a well-known formalism
providing a simple mathematical model to express optimization problems in random
environments. In particular, a discrete time finite MDP is an extension of a Markov
chain which allows non-deterministic choices/actions, and a reward/cost function
expressing an objective function to be minimized/maximized. For each non-
deterministic action allowed in a given state, a reward/cost and a transition probability
distribution are defined. Hence, the evolution of an MDP can be described as a sequence
of non-deterministic transitions. MDP theory has been proved to provide systematic
low-cost decisions for stochastic processes satisfying the Markov property. They are
used in a wide range of disciplines: production planning, automated control, artificial
intelligence and economics [9].

In most real distributed systems, it is possible to perform non-deterministic choice
among the set of possible actions, e.g., the scheduling of tasks, when the effect of the
selected action is probabilistic, e.g., the random duration of a task. Modelling these

Control design for untimed Petri nets using Markov decision processes 29

systems directly at the level of an MDP may be a hard task. To cope with this problem,
a number of higher-level formalisms have been proposed in the literature (e.g., [2, 4–6,
12, 14, 28]. Almost all of these approaches have been defined as extensions of PNs for
highly specified MDPs but they do not consider problems where control is required to
be robust to faults [13, 29], i.e., for the derivation of sequences that steer the system
from its current state to a reference state in the case of a fault. More particularly, they
do not consider control issues in uncertain environments where control errors or
unexpected events disturb system behaviour.

MDPs with discrete-time will be considered in this paper: each decision is taken at
a given moment. After the probabilistic consequence of a decision has been realised,
a new decision moment starts. Therefore, the goal is to associate the modelling power
of PNs with the planning power of MDPs that is useful for systems and environments
that obey the Markov assumption. This paper is organized as follows. Section 2 is about
the modelling of DESs in uncertain environments using PNs. Section 3 presents the
main results. Section 4 gives an illustrative example. Section 5 sums up the conclusions
and perspectives.

2. PNs with uncertain control actions

In this section, PNs are used to formalize the problem of controlling DESs in
uncertain environments.

2.1. Petri nets

A PN structure is defined as G = <P, T, WPR, WPO>, where P = {p1, ..., pn} is a set of
n places and T = {t1, ..., tq} is a set of q transitions with indexes {1, ..., q}, WPO  (N)nq and
WPR  (N)nq are the post- and pre-incidence matrices (N is the set of non-negative
integer numbers), and W = WPO – WPR is the incidence matrix. <G, MI > is a PN system
with initial marking MI and M  (N) n represents the PN marking vector (which can be
interpreted as the vector of the number of “tokens” at each place). Each marking M
represents a state of the DES. A transition tj is enabled given the marking M if min{mk
/ PR

kjw : pk  °tj} > 0 (if PR
kjw = 0, then it is assumed that mk/ PR

kjw  > 0), where °tj stands

for the set of upstream places for the transition tj, mk is the marking of place pk, PR
kjw is

the entry of matrix WPR in row k and column j. This is denoted as M [tj >. When tj fires once,
the marking varies according to M = M ʹ – M = W(:, j), where W(:, j) is a column j of the
incidence matrix. This is denoted by M [tj > M ʹ or equivalently by M ʹ = M + W·Xj, where
Xj denotes the firing count vector of transition tj [11]. Hence, for a transition to occur,
the numbers of tokens at the upstream sites must be large enough (according to the

 C. DAOUI, D. LEFEBVRE 30

matrix WPR) to enable firing and the numbers of tokens delivered to the downfield sites
are given by the matrix WPO. Each firing of a transition represents an event (controlled
or unexpected) that changes the state of the DES. A firing sequence  with initial
marking MI is defined as  = t(j1)t(j2) ... t(jh), where j1, ..., jh are the indexes of the transitions.
X()  (N)q is the firing count vector associated with , || = h is the length of , and  = 
denotes the empty sequence. The firing sequence  starting from M leads to the marking
trajectory (, M), where:

 (, M) = M [t(j1) > M(1) ... M(h – 1)[t(jh) > M(h)) (1)

where M(1), ..., M(h – 1) are the intermediate markings and M(h) is the final marking
(hereafter, we write M(k)  (, M), k = 1, ..., h). A marking M is said to be reachable
from initial marking MI if there exists a firing sequence  such that (s.t.) MI [ >M and
 is said to be feasible at MI. Reach(G, MI) is the set of all reachable markings from MI
(i.e., a set of discrete states). Assumption A1 is considered in the sequel:

A1. The set of reachable markings, Reach(G, MI), of the considered PN is of finite
cardinality.

As a consequence, the PN system <G, MI > is bounded. Additionally, the function
TR is defined by:

       
 

 

For all Reach , , : ,
, if

 otherwise ,

[
I I

j j

MM G M Reach G M TR M M e
TR M M t M t M

TR M M

   
  

  

 (2)

2.2. Controlled PNs in uncertain environments

For control issues in uncertain environments, PNs with specific interpretations are
considered. For this purpose, a set C = {c1, ..., ckc} of kc distinct control actions is
defined. In addition,  stands for the specific control action “there is nothing to do” (the
null action). Control actions are controlled events. Uncontrollable events also exist and
D stands for the set of uncontrolled events: uncontrolled events are either the occurrence
of faults that lead to a system failure or events that result from the interaction between
the environment and the system. Such uncontrolled events are not detailed. The set of
transitions T is also divided into 2 disjoint subsets TC, and TNC such that T = TC  TNC.
TC is the subset of qc controllable transitions, and TNC the subset of qnc uncontrollable
transitions. The firing of enabled controllable transitions are enforced or avoided by the
controller according to the control actions, whereas the firing of uncontrollable transitions
cannot be enforced or avoided and fire spontaneously according to the occurrence of

Control design for untimed Petri nets using Markov decision processes 31

uncontrolled events. A sequence is said to be controllable if it contains only controllable
transitions. Note that two or more control actions may enforce the same transition, but in
order to obtain deterministic control strategies, Assumption A2 is adopted:

A2. Two transitions tj and tk with j  k are not associated with the same controlled event.
More formally, the function AC maps controllable events to controlled transitions: for
c  C, AC(c)  TC is the controlled transition whose firing is enforced by c when the
transition AC(c) is enabled. In addition AC() = . Reversely, for tj  TC, 1

C
A (tj)  C is

the set of controlled events that enforce the firing of the transition tj when tj is enabled
and 1

C
A () ={}. In addition, for any couple (M, c)  Reach(G, MI)  (C  {}), c +(M)

(resp. c  (M)) refers to the successor of marking M (resp. the predecessor of M) when
c is executed. C

Γ (M) and D
Γ (M) refer respectively to the sets of successors of the

marking M for all controlled events and all uncontrolled ones. C
Γ (M) and D

Γ (M) refer
to the sets of predecessors of M obtainable by applying any controlled event and any
uncontrolled event, respectively.

Hereafter, faults will be considered that correspond either to the wrong execution
of some controlled event or to the unexpected occurrence of some uncontrolled event.
Such faults lead to an uncertain environment that the controller has to deal with. Such
faults will occur according to the set PROB of probabilities (3):

PROB = {prob(M, M ʹ, c)

for all (M, M ʹ, c)  Reach(G, MI)  Reach(G, MI)  (C  {})} (3)

prob(M, Mʹ, c) is the probability of Mʹ being the successor of M when the control action c
is undertaken by the controller. The previous definitions and assumptions are suitable
to represent a large variety of uncertain environments. Four particular cases will be
studied below.

Case 1. There is no uncontrollable transition (i.e., TC = T) and no fault. The set PROB
is defined by:

prob(M, M ʹ, c) = 1 if AC(c) = TR(M, M ʹ)

 prob(M, M ʹ, c) = 0, otherwise. (4)

In this case, the controlled system behaves deterministically and there is no
uncertainty at all.

 C. DAOUI, D. LEFEBVRE 32

Case 2. There is no uncontrollable transition (i.e., TC = T), but faults are considered
that correspond to the incorrect execution of a control action: a control action c  C  {}
is executed by the controller when the marking is M and no transition fires or an
unexpected enabled controllable transition tj  AC(c) fires. For any couple (c, t)  (C 
{})  (TC  {}), prob(c, t) is the probability that t fires when c is executed. The
probabilities prob(c, t), t  TC  {} obviously satisfy:

 
prob(,) = 1

ct T
c t

 


For simplicity, prob(c, t) does not depend on the current marking M. Consequently,
the set PROB is defined by:

 prob(M, M ʹ, c) = prob(c, TR(M, M ʹ))/S2(M, c)

if TR(M, M ʹ)  TC  {}

prob(M, M ʹ, c) = 0, otherwise (5)

where S2(M, c) is the normalization coefficient for case 2, i.e.:

  
2

,
(,) (prob(,))

ct M t
S M c c t

  

 
T

Case 3. Uncontrollable transitions exist (i.e., TC  T) and faults are considered that
correspond to the unexpected occurrence of some uncontrolled events. A control action
c  C  {} is undertaken by the controller when the marking is M. This action should
enforce the firing of AC(c)  TC  {}, but an uncontrollable transition t  TNC fires
instead. For any couple (c, t)  (C {})  (TNC  {AC(c)}), prob(c, t) is the probability
that t fires when c is decided. Prob(c, t), t  TNC  {AC(c)} obviously satisfy:

prob(, ()) prob(,) 1
NC

C
t

c A c c t


 
T

In this case, the set PROB is defined by:

prob(M, M ʹ, c) = prob(c, TR(M, M ʹ))/S3(M, c)

if TR(M, M ʹ)  TNC  {AC(c)}

prob(M, M ʹ, c) = 0, otherwise (6)

where S3(M, c) is the normalization coefficient for case 3, i.e.:

Control design for untimed Petri nets using Markov decision processes 33


3

,
S (,) (prob(, ()) (prob(,))

NC

C
t M t

M c c A c c t
 

  
T

Case 4. Faults are considered that correspond either to the wrong execution of
a control action or to the unexpected occurrence of some uncontrollable event. Case 4
combines cases 2 and 3, and the set PROB is defined by:

prob(M, M ʹ, c) = prob(c, TR(M, M ʹ))/S4(M, c)

if TR(M, M ʹ)  TC  TNC  {}

prob(M, M ʹ, c) = 0, otherwise (7)

where S4(M, c) is the normalization coefficient for case 4, i.e.:

  
4

,
(,) = (prob(c, t))

C NCt M t
S M c

   


T T

2.3. Example

Let us consider PN1 as described in Fig. 1 as an example of a controlled DES. The
initial marking is MI = (2 0 0 0 0)T = 2p1 and the objective of the controller is to compute
a trajectory of minimal length to reach the reference marking Mref = (0 0 0 0 2)T = 2p5.
The transitions {t1, t2, t3, t4, t5, t6} are mapped to controllable events according to the
function AC.

Fig. 1. Example of controlled PNs: PN1 (left), PN2 (right)

Different environments are successively considered according to the four different
cases previously described. In cases 1 and 2, the set C = {a, b, c, d, f, g} of control

 C. DAOUI, D. LEFEBVRE 34

actions is mapped to controllable transitions according to the function AC: AC(a) = t1,
AC(b) = t2, AC(c) = t3, AC(d) = t4, AC(f) = t5, AC(g) = t6 (Fig. 1, left). Whereas in cases 3
and 4, the set Cʹ = {a, b, c, d, g} and the mapping CA are considered, where: CA (a) =
t1, CA (b) = t2, CA (c) = t3, CA (d) = t4, CA (g) = t6 (Fig. 1, right).

Fig. 2. Reachability graph for PN1 in cases 1 and 2

Fig. 3. Reachability graph for PN2 in cases 3 and 4

Control design for untimed Petri nets using Markov decision processes 35

In cases 2 and 4, control errors are assumed to occur with probability prob(c, t) =
0.1 for c  C  {} and t TC  {}. In cases 3 and 4, an uncontrollable transition t5
is considered which occurs with probability prob(c, t5) = 0.2 for c  C  {}. The
reachability graphs of the PNs are given in Fig. 2 for cases 1 and 2, and in Fig. 3 for
cases 3 and 4. The dashed lines represent the occurrence of an unexpected event.

3. Control design with MDPs

In this section, the theory of Markov decision processes [25] is adapted to the PN-
-based control design of DESs in uncertain environments.

3.1. Markov decision processes

Basically, in MDP models an agent interacts with his/her environment, taking the
state of the environment as the input and generating actions as outputs. MDPs are
defined using controllable stochastic processes which satisfy the Markov property and
assigning rewards to each state transition. We consider a stochastic dynamic system
which is observed at discrete time points (k = 0, 1, ...). At moment k, the system is in
state Sk  S (S denotes the state space of the system), an action a  A (A denotes the set
of actions) is chosen by optimizing the expected reward R(Sk, a). This action is executed
and the state of the system changes according to the transition probabilities prob(Sk, Sk+1, a).
MDPs are special cases of decision processes where the transition probability, reward
function and optimal action depend only on the current state and are otherwise
independent of the history of the process.

A strategy  is defined as a sequence π = (π1, π2...) where : k
kH  is a deci-

sion rule, 1= () k
kH S A S  is the set of all histories up to time k, and

 1
1

(, ..., q) : 1, 0, 1
A

A
i iA

i
q q q i A



        
  



is the set of probability distributions over ().
i S

A A i


 

A Markov strategy is a strategy  in which  k depends only on the current state at
time k, a stationary strategy is a Markov strategy with identical decision rules at each
time k, and a deterministic or pure strategy is a stationary strategy whose single decision
rule is non-stochastic.

The core problem of MDPs is to find an optimal policy that specifies which action
should be taken in each state. Optimality is decided according to an optimality criterion

 C. DAOUI, D. LEFEBVRE 36

that evaluates the efficiency of the different candidate policies. The criterion is to
maximize the expected reward. There are several standard methods for finding optimal
policies for MDPs. Widely employed approaches include linear programming (LP), the
value iteration (VI) algorithm and the policy iteration (PI) algorithm. Details about
MDPs and optimization algorithms can be found in [1, 10, 25].

3.2. Markov decision process for untimed PNs

We consider untimed PNs in uncertain environments as stochastic dynamic systems
which are observed at discrete time points (k = 0, 1, ...). At each time point k, if the
system is in state M  Reach(G, MI), a control action c  C  {} has to be chosen by
the controller and executed. Such an action changes the state of the system. In this case,
two things happen: a reward R(M, c) is earned immediately, and the system moves to
a new state M ʹ according to the probability prob(M, M ʹ, c) defined in Section 2. The
rewards are defined by:

R(M, c) = +N if (M  C –(Mref) and c  ) or (M = Mref and c = )

R(M, c) = 0 if M  Mref and c = 

R(M, c) = –1 otherwise (8)

The reward function R(M, c) gives a payoff of N to concrete actions (i.e., c  )
chosen for any predecessor of Mref and for the null action chosen for Mref. It gives no
gain nor penalty for the null action (i.e., c = ) when applied in state M  Mref. Finally,
it gives a penalty in all other cases. The reward obtained from a trajectory (, M) of the
form (9) depends linearly on the length h of the firing sequence :

 R(M, ) = N – h + 1 (9)

Consequently, determining a trajectory of minimal length from M to Mref is
equivalent to deriving a trajectory that maximizes R(M, ). Note that for very uncertain
environments, the reward function can be adapted by adding a penalty for actions that
move the state into a dangerous state (i.e., a state from which an unexpected event may
occur).

To ensure the existence of an exact solution we consider discounted MDP with finite
state and action spaces. Thus, the value function V (MI), which is the expected reward
from using the policy  when the process starts in state MI, is given by

 () = ((), (()) |k
I I

k
V M E R M k M k M   

 
 
 (10)

Control design for untimed Petri nets using Markov decision processes 37

The objective is to determine V*, the maximum expected total discounted reward,
over an infinite horizon where  is the discount factor (0 ≤  < 1). The vector V* satisfies
the optimality equation [7]:

 * *

c C { } Reach(,)
() = max (,) prob(, ,) ()

IM G M
V M R M c M M c V M




  

    
  

 (11)

The actions attaining the maximum in (11) define an optimal deterministic policy
* satisfying:

k
((), (()) |]k

IR M k M k M 

 * *

c C { } ' Reach(,)
() argmax (,) prob(, ,) ()

IM G M
M R M c M M c V M


 

  

     
  

 (12)

The most widely used iterative methods for finding optimal or approximately
optimal policies for MDPs include value iteration (VI) and policy iteration (PI)
algorithms. In this section, we present an adaptation of the VI algorithm to PNs
introduced by Larach et al. [16]. This algorithm uses a list of state-action successors that
leads to accelerating the iterations of the usual VI algorithm.

Algorithm 1. VI Algorithm
(In: Reach(G, MI), PROB, C, { , C { }},C c    , ; Out: V*, *)
1. For all M  Reach(G, MI), DoV*(M)  0; end for
2. Repeat
3. For all M  Reach(G, MI), Do

1

c C { }

() = max (,) prob(, ,) ()
C

k k

M

V M R M c M M c V M









 


   
  



4. End for
5. Until (1)(||V ||) k kV  
6. V*  Vk
7. For all M  Reach(G, MI), Do

* *

c C { }

() argmax (,) prob(, ,) ()
CM

M R M c M M c V M
 

 
  

     
  



8. End for
9. Return V*, *

 C. DAOUI, D. LEFEBVRE 38

The use of the sets{ , { }}C c   C instead of Reach(G, MI) avoids the need to
include the states M ʹ that are not reachable from state M with control action c in (12).
This reduces the complexity of the classical VI algorithm [16].

3.3. Example

Let us consider again PN1 and PN2 as given in Fig. 1. Four MDP-based controllers
1–4, will be considered below, corresponding to the four cases previously described. The
controllers generate only controllable actions in the set C{}. The definition of the
controller depends on the set PROB defined by (5)–(7) and on the reward function (8)
according to the individual cases. The control actions taken by 1–4 are given in Table 1.

Table 1. MDP-based controllers for PN1 and PN2

M 1 2 3 4

M1 d d a a
M2 b d a a
M3 d d a a
M4 b b b b
M5 c d a a
M6 b b b b
M7 f f  
M8 d d a a
M9 b b b b

M10 c f  
M11 b b b b
M12 f f  
M13 c c c c
M14 c c c c
M15    

Let us consider again the initial marking MI = 2p1 and the reference marking Mref = 2p5.

The policies 1 and 2 are used under PN1 when no unexpected events are considered.
These policies decide at the first step to enforce the firing of t4 using the control action d.
When no control error occurs (Case 1), the complete trajectory is obtained by the
sequence of decisions  = d d f f that leads to the firing sequence  = t4 t4 t5 t5. The
policy 1 leads to the shortest sequence and the sequence t4 t5 is preferred to the sequence t1
t2 t3 to move each token in p1 into p5. When control errors occur (Case 2), the controller
adapts the sequence of actions depending on these errors. For example, the incorrect
execution of the second action d as t1 leads to the firing sequence ʹ = t4 t1 t2 t5 t3. The
policies 3 and 4 are used under PN2 when unexpected events are considered. In these
cases, the sequence t1 t2 t3 is preferred to the sequence t4 t5 to move each token in p1 into

Control design for untimed Petri nets using Markov decision processes 39

p5 because the transition t5 is no longer controllable. When no control error occurs (Case
3), the complete trajectory is obtained by the sequence of decisions  = a a b b c c that
leads to the firing sequence  = t1 t1 t2 t2 t3 t3. When control errors can also occur (Case
4), the controller adapts the sequence of actions. For example, if the last action c is
executed as t6, the sequence of decisions leads to the firing sequence  ʹʹʹ = t1 t1 t2 t2 t3 t6
t1 t2 t3.

4. Case study

PN3 is the untimed model of a manufacturing system that produces two types of
products corresponding to two jobs [9] (Fig. 4). The first job is defined by transitions
t1–t8 and the second one is defined by transitions t9–t14. The six resources p14–p19 have
limited capacities: m(p14) = m(p15) = m(p16) = m(p17) = m(p18) = m(p19) = 1. Given the initial
marking MI = 6p1 + 6p8 + 1p14 + 1p15 + 1p16 + 1p17 + 1p18 + 1p19, PN3 has 282 reachable
states and 16 deadlock markings (from which no transitions can be implemented).

Fig. 4. PN3 model of a manufacturing system (after [9])

In order to point out the advantages of the proposed MDP-based method, the
performance and complexity of the method are evaluated and compared with the results
obtained with exhaustive searches based on breadth-first search (BFS) and depth-first
search (DFS) approaches. Case 1 is considered for this example: there is no control error
nor unexpected event, all transitions are controllable (i.e., TC = T). For comparison,
a selection of several reference markings Mref is considered. The markings Mref are
categorised into different sets G, depending on the length Kopt of the optimal sequence
for reaching Mref. Note that the length of the shortest sequence from MI to any reachable

 C. DAOUI, D. LEFEBVRE 40

marking Mref is easy to obtain by calculating the successive powers of the generator of
the reachability graph, but this method does not derive the sequence, it just gives its
length [17]. The sets GKopt with Kopt  {4, 7, 10, 13, 15, 18} (18 is the maximal depth
in Reach(PN3, MI)) are considered in turn and |GKopt| denotes the cardinality of the set
GKopt. The proposed solutions are calculated using a maximal computation time, CTlim,
of 120 s that corresponds to exhaustive exploration up to depth 10 using the BFS
approach for an Intel Core i7-4600 CPU at 2.1–2.7 GHz. Table 2 summarises the global
convergence performance in the untimed context: for each set GKopt the success rate
(i.e., the proportion of reference markings in GKopt for which an admissible control
sequence is found within CTlim) is reported for each method. Table 2 also reports the
proportion of reference markings for which the computed control sequence is minimal
in length. For example, the performance using the DFS method for set G4 is 100/10.
This means that 100% of the reference markings in the set G4 are reached and that 10%
are reached using a sequence of length 4. Table 2 illustrates that the MDP-based method
always succeeds and leads to the best solution, whereas the BFS only succeeds up to
depth 10 and then fails because CTlim is exceeded. In comparison, the DFS approach
provides poor solutions, because DFS continues exploring each branch until a marking
that has been previously visited in the same branch is reached. Thus, the returned
solutions are often non-optimal, because only a few branches are explored within CTlim.

Table 2. Performance for PN3

GKopt |GKopt| MDP DFS BFS
G4 10 100/100 100/10 100/100
G7 26 100/100 92/8 100/100
G10 32 100/100 91/9 100/100
G13 12 100/100 92/8 0
G15 4 100/100 100/0 0
G18 4 100/100 50/0 0

Fig. 5. Mean computation time in dependence on the depth Kopt for PN3

Control design for untimed Petri nets using Markov decision processes 41

Figure 5 reports the computational time using the tested methods w.r.t. the depth Kopt.
One can notice that the complexity of the MDP-based methods is low compared to
exhaustive search, which has an exponential complexity: it never exceeds 5 seconds. This
illustrates the advantage of MDP-based methods from the computational point of view.

5. Conclusion

Control issues for DESs in uncertain environments have been considered. These
systems have been modelled using untimed PNs that include unexpected events and
control errors encoded in a set of probabilistic equations. The design of control
sequences is obtained by using discrete time Markov decision processes (MDPs) leading
to minimal size sequences according to an appropriately defined reward function. The
main advantage of the proposed methods is that they provide an optimal solution even
if the environment is uncertain but satisfies the Markovian property. Another advantage
is that the optimal policy is applicable for any initial marking and only depends on the
reference to be reached.

This work is a preliminary study about the use of MDPs for control problems
modelled using PNs and numerous perspectives will be considered in future work.
Above all, the reward function will be adapted to include an evaluation of the risk of
firing uncontrollable transitions in the computed trajectory. The structural analysis of
PNs will be used for that purpose. For DESs with very uncertain environments (i.e.,
including numerous unexpected events), policies that consider unexpected events as
possible actions will also be studied. To accelerate convergence, a reverse computation
of the reachability graph will be studied.

In the next step, the method will be extended to timed PNs and to unbounded nets.
Finally, unknown environments will be considered by considering Markov decision
PNs, Markov decision well-formed nets, bounded-parameter MDPs and by adding
learning to the MDP framework.

Acknowledgements

The Project MRT MADNESS 2016–2019 is funded by the European Union from the European Regional
Development Fund (ERDF), as well as by the Regional Council of Normandy and the Erasmus Battuta program.

References

[1] ABBAD M., DAOUI C., Hierarchical algorithms for discounted and weighted markov decision processes,
Math. Meth. Oper. Res., 2003, 58 (2), 237–245.

[2] ALUR R., HENZINGER T., Reactive modules, Formal Meth. Syst. Des., 1999, 15 (1), 7–48.

 C. DAOUI, D. LEFEBVRE 42

[3] BAKER K.R., TRIETSCH D., Principles of Sequencing and Scheduling, Wiley, 2009.
[4] BECCUTI M., FRANCESCHINIS G., HADDAD S., A framework to design and solve Markov decision Petri

nets, Int. J. Perform. Eng., 2011, 7 (5), 417–442.
[5] BECCUTI M., FRANCESCHINIS G., HADDAD S., Markov decision Petri net and Markov decision well-

formed net formalisms, Lecture Notes in Comp. Sci., 2007, 4546, 43–62.
[6] BECCUTI M., CODETTA-RAITERI D., FRANCESCHINIS G., HADDAD S., A framework to design and solve

Markov decision well-formed net models, Proc. 4th IEEE Int. Conf. Quantitative Evaluation of Sys-
tems (QEST 2007), Scotland, UK, 2007, 165–166.

[7] BELLMAN R.E., Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.
[8] CASSANDRAS C., Discrete event systems. Modeling and performance analysis, Aksen Ass. Inc. Pub.,

Homewood 1993.
[9] CHEN Y., LI Z., KHALGUI M., MOSBAHI O., Design of a maximally permissive liveness-enforcing Petri

net supervisor for flexible manufacturing systems, IEEE Trans. Automation Science and Engineering,
2011, 8 (2), 374–393.

[10] DAOUI C., ABBAD M., TKIOUAT M., Exact decomposition approaches for Markov decision processes.
A survey, Adv. Oper. Res., 2010, 1–19.

[11] DAVID R., ALLA H., Petri Nets and Grafcet. Tools for Modelling Discrete Events Systems, Prentice
Hall, London 1992.

[12] EBOLI M.G., COZMAN F.G., Markov decision processes from colored Petri nets, SBIA 2010, Lecture
Notes in Comp. Sci., Springer, 2010, 6404.

[13] FENG Y., XING K., GAO Z., WU Y., Transition cover-based robust Petri net controllers for automated
manufacturing systems with a type of unreliable resources, IEEE Trans. Syst., Man Cyber. Syst., 2016,
1–11.

[14] GIVAN R., LEACH S., DEAN T., Bounded-parameter Markov decision processes, J. Art. Int., 2000, 122
(1–2), 71–109.

[15] JENG M.D., CHEN S.C., Heuristic search approach using approximate solutions to Petri Net state equations
for scheduling flexible manufacturing systems, Int. J. Flex. Manuf. Syst., 1998, 10 (2), 139–162.

[16] LARACH A., DAOUI C., CHAfiK S., Accelerated decomposition techniques for large discounted Markov
decision processes, J. Ind. Eng., Springer, 2017.

[17] LEFEBVRE D., On-line fault diagnosis with partially observed Petri nets, IEEE Trans. Aut. Control,
2014, 59 (7), 1919–1924.

[18] LEFEBVRE D., LECLERCQ E., Control design for trajectory tracking with untimed Petri nets, IEEE
Trans. Aut. Control, 2015, 60 (7), 1921–1926.

[19] LEFEBVRE D., Approaching minimal time control sequences for timed Petri nets, IEEE Trans. Aut. Sci.
Eng., 2016, 13 (2), 1215–1221.

[20] LEFEBVRE D., Deadlock-free scheduling for timed Petri net models combined with MPC and back-
tracking, Proc. IEEE WODES 2016, Control, Observation, Estimation and Diagnosis with Timed PNs,
Xian, China, 2016, 466–471.

[21] LEFEBVRE D., Deadlock-free scheduling for flexible manufacturing systems using untimed Petri nets
and model predictive control, Proc. IFAC – MIM, DES for Manufacturing Systems, Troyes, France,
2016.

[22] LEI H., XING K., HAN L., XIONG F., GE Z., Deadlock-free scheduling for flexible manufacturing systems
using Petri nets and heuristic search, Comp. Ind. Eng., 2014, 72, 297–305.

[23] LEUNG Y.-T., Handbook of Scheduling. Algorithms, Models, and Performance Analysis, CRC Com-
puter and Information Science Series, Chapman Hall, 2004.

[24] LOPEZ P., ROUBELLAT F., Production Scheduling, ISTE Wiley, London 2008.
[25] PUTERMAN M., Markov Decision Processes. Discrete Stochastic Dynamic Programming, Wiley, New

York 1994.

Control design for untimed Petri nets using Markov decision processes 43

[26] TUNCEL G., BAYHAN G.M., Applications of Petri nets in production scheduling. A review, Int. J. Adv.
Manuf. Techn., 2007, 34, 762–773.

[27] WANG Q., WANG Z., Hybrid heuristic search based on Petri net for FMS scheduling, En. Proc., 2012,
17, 506–512.

[28] WIESEMANN W., KUHN D., RUSTEM B., Robust Markov decision processes, Math. Oper. Res., 2013,
138 (1), 153–183.

[29] YUE H., XING K., HU H., WU W., SU H., Petri-net-based robust supervisory control of automated man-
ufacturing systems, Control Eng. Pract., 2016, 54, 176–189.

Received 13 June 2017
Accepted 9 January 2018

