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ESTIMATING THE RELIABILITY  
OF THE ELEMENTS OF CLOUD SERVICES 

Cloud technologies are a very considerable area that influence IT infrastructure, network services 
and applications. Research has highlighted difficulties in the functioning of cloud infrastructure. For 
instance, if a server is subjected to malicious attacks or a force majeure causes a failure in the cloud’s 
service, it is required to determine the time that it takes the system to return to being fully functional 
after the crash. This will determine the technological and financial risks faced by the owner and end 
users of cloud services. Therefore, to solve the problem of determining the expected time before service 
is resumed after a failure, we propose to apply Markovian queuing systems, specifically a model of 
a multi-channel queuing system with Poisson input flow and denial-of-service (breakdown). 
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1. Introduction 

The global integration of information systems which is based on the implementation 
of cloud technologies and networks via the Internet, has led to the need to solve two 
main tasks: 1) diagnosing the functioning of cloud servers, workstations and software, 
2) protection of information resources against unauthorized influence on a system from 
different sources. The central issue in solving these problems is to obtain timely infor-
mation on the following: the state of a cloud, the possible complete or partial loss of 
working capacity as a result of a failure due to accident or intent, as well as unauthorized 
access to a cloud’s resources. 
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In business terms, the main characteristic of cloud technologies is the pay-per-use 
principle. The end user pays only for the time he uses cloud services. This characteristic 
distinguishes a cloud technology’s business model from, for example, hosted services. 
This leads to the second characteristic of cloud technologies: the use of a service only 
on-demand. Another main characteristic is the provision of cloud services to multiple 
users by the same infrastructure. In the event of a breakdown or occurrence of a force 
majeure, the server intends that the end user switches to other resources (this load is 
transferred to other servers) which provides the user with a stable technical resource. In 
turn, the user remains connected to a particular cloud service provider. The solution to 
this problem is the standardization of services, which, to some extent, eliminates the 
fear that any service critical to the company will be unavailable for some time. 

On the other hand, it is very important for the provider of cloud technologies to 
ensure an uninterrupted power supply to all its servers, since every minute of their use 
generates income. Unfortunately, public and private clouds are the subject of malicious 
attacks and disruptions to the infrastructure, such as power outages. Such incidents may 
affect the operation of domain name servers, make cloud servers open to third parties 
or directly disrupt their functioning. For example, an attack on Akamai Technologies, 
that took place in 2004, caused problems with the resolution of domain names and 
a major failure affecting the Google Inc., Yahoo! Inc. and many other sites. In 2009, 
Google was the subject of DoS-attacks (denial-of-service) which put Google News and 
Gmail out of service for a few days [15]. 

In cases where a server is subjected to malicious attacks or a force majeure causes 
a cloud service to fail, it is required to determine the time it takes the system to return 
to being fully functional after the crash. This will determine the level of technological 
and financial risks for both the owner and end users of cloud services. 

According to [1, 2, 16–21] the operating process of cloud technologies is often de-
scribed using the theory of queuing systems. The simplest approach to modelling the 
functioning of a computer server, which is proposed in [10, 14, 17], is based on the use 
of Markovian queuing systems of type M/M/k (systems with Poisson input flow, expo-
nential output flow, k channels of service). A more complex approach is the use of 
queueing systems of type M/G/k (which assume Poisson arrivals, but model the output 
process using a generic distribution) and G/G/k. In our research, we will consider the 
first approach more precisely, which will allow us to explore the details of the function-
ing of any server in general. After such an investigation, it will be appropriate to increase 
the complexity of the model and explore queueing systems with other distributions of 
input and output flow. 

Therefore, to solve the problem of determining the time to restore a fixed server to 
full functionality after a failure, we propose to apply Markovian queuing systems, 
namely a multi-channel queuing system with Poisson input flow and denial-of-service 
(breakdown). 
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2. Mathematical model of a server’s performance 

There are three models of cloud computing services: 
 Software as a Service (SaaS). The end user is provided with software in the form 

of a provider’s applications running on a cloud infrastructure. 
 Platform as a Service (PaaS). The end user obtains cloud infrastructure tools to 

distribute applications created or purchased by the end user via the programming lan-
guages and tools supported by the provider. 

 Infrastructure as a Service (IaaS). The end user obtains data processing, storage, 
networking and other basic computing resources, including operating systems and ap-
plications, where unspecified software can be deployed and run. 

These models of cloud computing services are based on the operation of the main 
element of cloud technologies – a server. Investigating the mode of server operation 
(Fig. 1) and determining system characteristics will allow us at any time to calculate the 
required parameters of the reliability of a cloud service element, which is the main pur-
pose of this article. 

 
Fig. 1. Description of the server’s operation 

We consider the operation of a server functioning as a multiple queuing system. 
A k-channel queuing system receives a Poisson inflow of requests with an intensity . 
The service time is a random variable distributed according to an exponential law with 
parameter . Suppose that each of the service channels may fail and failures occur as 
a Poisson process with the parameter 0. The time spent on repairing the service channel 
is a random variable which has an exponential distribution with parameter 0. A de-
scription of the server’s operation is shown in Fig. 1. 

Let ( ) ( )m kP t  be the steady state probability that at time t, k requests are being ser-
viced in the system, the channel is operational, and m requests are in the queue; ( ) ( )m kR t  
is the probability that k requests are being serviced by the system, the channel is out of 
order, m requests are in the queue, and new requests continue to enter the system. The 
number of requests in the system is limited to N = m + k, k = 0, 1, 2, 3, ..., k1, m = 0, 1, 
2, 3, ..., m1. 
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Let us define the number of channels to be k1 and the maximum number of spaces 
in the queue to be m1. Firstly, suppose the system is functioning. Considering how the 
system may leave a given state (negative expressions) and from what states the system 
may enter the considered state directly (positive terms), we obtain five equations defin-
ing the dynamics of a system of this form describing the following situations: 1) the 
system is empty, 2) not all of the channels are active, 3) all of the channels are active 
but there are no requests waiting, 4) there are requests waiting, but the system is not 
full, 5) the system is full. In a similar way, we can define analogous equations defining 
the dynamics when the system is not functioning. Thus, the stochastic model of the 
server’s dynamics is presented by the following homogeneous system of linear differ-
ential equations: 
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The system (1) is a Markovian queuing system of type 1 1/ / /M M k m with Poisson 
input flow and denial of service. We can illustrate the server’s performance using 

1 1 3N m k    as an example. In this case, the system (1) takes the following form: 
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0(0) 0 0(0) 0(1) 0 0(0)( ) ( ) ( ) ( ) ( )P t P t P t R t          
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The stochastic model described by (1), which represents the server’s operation in 
real time, can be presented in the following vector-matrix form: 

    d t
t

dt


P
AP  (3) 
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where A is a square matrix whose elements have constant values aij that define the sys-
tem’s parameters. The elements on the matrix’s leading diagonal, linear combinations 
of 0 0, , , ,     are generally greater in absolute value, compared to the off-diagonal 
elements, and have a negative sign. The off-diagonal elements of the matrix aij can be 
a single element (one of 0 0, , , ),     or zero. The zero elements constitute the majority 
of each row of the matrix. We also note that the non-zero elements are arranged sym-
metrically with respect to the matrix’s leading diagonal. 

In this case, the condition of rationing states that: 

 
1 1 1 1

( ) ( )
0 0 0 0

( ) ( ) 1
k m k m

m k m k
k m k m

P t R t
   

    (4) 

since at any particular time the system must be in exactly one of the states described 
above. For a correctly built model, det( ) 0.A   Hence, it is obvious that satisfying the 
local balance conditions in all the states of the network is a sufficient condition for the 
existence of a steady state in the network. 

3. Methodology 

After performing an analysis of a number of studies [3–14] to address work on such 
dynamics, it is possible to conclude that the problem has not been studied in depth. It is 
obvious that most of the literature on queuing theory is dedicated to systems in steady 
mode operation. Therefore, we try to apply the solution method based on diagonalizing 
the matrix of the system’s coefficients given in the set of equations (1). This method has 
not previously been applied to a queuing system. 

The matrix form of the dynamics, given by equation (3), can be presented as fol-
lows. Let 
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be the vector describing the distribution of the initial state of the system. We write the 
vector P(t) as T·y(t), where 
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Т is matrix whose columns are the eigenvectors of the matrix А. Then, 
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Therefore, 
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The matrix D is diagonal and the elements on the leading diagonal are the eigenval-
ues i of the matrix A. Hence, P(t) = T·y(t) and thus we obtain y(t) = T–1·P(t). 

Since (0) ,P c where 
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we obtain    1 10 · 0 ,   y T P T c  where 
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Equation (6) thus becomes: 
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Thus, the initial system of linear differential equations given by (3) has been trans-
formed into the form (7), convenient for further analysis, by diagonalization of the ma-
trix A. Hence, for the i-th equation of (7) we have 
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Since *(0) ,i iy c  the particular solution will be: 

   *e it
i iy t c   (8) 

Using (8), we obtain the general solution of the dynamic system (3) in real-time mode: 
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Thus, formula (9) represents the solution of the dynamic system (3) in real-time 
mode that have been found by the method of diagonalizing matrix A. 

It should also be noted that, according to the well-known Lyapunov theorem [20, p. 19], 
the solution of the linear homogeneous system of differential equations with constant 
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coefficients given by (1) will be stable in the case where the characteristic values of the 
system’s matrix coefficients have the following form: ,k k ka b i    where 0.ka   

The steady state solution of (1) can be found using the method of substitution. To 
do this, from equation (1) 

 0 0(0) 0(1) 0 0(0)( )P P R       (10) 

using the normalization equation, we obtain: 
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m k m k
k m k m
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     (11) 

Substituting expression (11) into (10), we obtain: 

 
1 1 1 1

0 0 ( ) ( ) 0(1) 0 0(0)
1 0 0 0

( ) ( )
k m k m

m k m k
k m k m

P R P R     
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       

 
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Replacing the first equation in system (1) by (12), we obtain a system of the form 

 * A P B  (13) 

where P is the vector describing the stationary distribution of the states of the server (to 
be determined), A* is the matrix of coefficients of these unknown probabilities; B is 
a vector of constants BT = ( + 0, 0, 0, 0, ..., 0). 

From (14) we obtain the steady state solution of the system (1): 

 * 1( ) P A B  (14) 

4. Numerical illustration 

We first set the parameters of the server. As an example, consider the productivity 
of the green zone and red zone of SharePoint Server 2013 [21]. The relative load on the 
green zone server is less than 60%, while the relative load on server resources in the red 
zone is almost 100%. According to [21], the intensity of requests in the first stream of 
queries is 2 queries/s. The server declines 30% of these requests, i.e., 0.60 queries/s, the 
server response time (95th percentile) is 412 ms. Thus we obtain  = 2 queries/s, 

0 0.60   queries/s, 1/0.412 2.43    queries/s, 0 1/0.412 2.43    queries/s. 
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We consider system (2), which assumes that the system can hold no more than 6 queries 
simultaneously and serve no more than 3, i.e., 1 1 3 3 6N m k     . The steady state 
solution of the system (2) is illustrated in Fig. 2. 

 
Fig. 2. The probability histogram of the stationary distribution of the server’s state*. 

Source: the authors’ calculations for the system (2) based on (14) using R 

Next, we describe the system’s evolution from an initial state. First, we prove that 
the system tends to the steady state distribution. The real parts of the eigenvalues of the 
coefficient matrix, listed in Table 1, are all negative, which indicates that the system (2) 
always tends towards its unique stable point. 

Table 1. The eigenvalues i of the system  
of homogeneous linear differential equations (2) 

Eigenvalue Value
1 –16.41 + 0i
2 –13.189 + 0i
3 –9.588 + 0i
4 –6.589 + 0.151i
5 –6.589 – 0.151i
6 –5.248 + 1.29i
7 –5.248 – 1.29i
8 –4.101 + 1.398i
9 –4.101 – 1.398i
10 –3.087 + 0.794i
11 –3.087 – 0.794i
12 –3.027 + 0i
13 –1.335 + 0i
14 0 + 0i

Source: the authors’ calculations 
for (2) using R

Thus, by assuming that initially there are no requests in the system, i.e., P(0)T = (1, 
0, 0, 0, ..., 0), using (9) we obtain the solution to the system (2) for any given moment 
of time t. This solution is described in Table 2. 
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Table 2. The probabilities of the server being in a given state depending on the time t, s 

State t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t → 
P0(0) 0.3627 0.31225 0.30197 0.29937 0.29868 0.2985 0.29845 0.29844 0.29844 
P0(1) 0.28811 0.2832 0.28038 0.27954 0.27932 0.27926 0.27924 0.27924 0.27924 
P0(2) 0.11674 0.13433 0.13725 0.13793 0.1381 0.13815 0.13816 0.13816 0.13817 
P0(3) 0.03221 0.04559 0.04889 0.04975 0.04997 0.05003 0.05005 0.05005 0.05006 
P1(3) 0.00874 0.01711 0.01999 0.02079 0.021 0.02106 0.02108 0.02108 0.02108 
P2(3) 0.00229 0.00686 0.00901 0.00965 0.00983 0.00987 0.00988 0.00989 0.00989 
P3(3) 0.00061 0.00291 0.00432 0.00477 0.00489 0.00492 0.00493 0.00493 0.00493 
R0(0) 0.05443 0.04326 0.04114 0.04063 0.04049 0.04046 0.04045 0.04045 0.04045 
R0(1) 0.06435 0.05874 0.05679 0.05629 0.05616 0.05613 0.05612 0.05612 0.05612 
R0(2) 0.04102 0.04488 0.04433 0.04414 0.04409 0.04408 0.04408 0.04408 0.04408 
R0(3) 0.01873 0.02611 0.02663 0.02668 0.02669 0.02669 0.02669 0.0267 0.0267 
R1(3) 0.00701 0.01356 0.01465 0.01485 0.0149 0.01491 0.01492 0.01492 0.01492 
R2(3) 0.00225 0.00653 0.00773 0.00799 0.00806 0.00807 0.00808 0.00808 0.00808 
R3(3) 0.00082 0.00467 0.00692 0.00762 0.00781 0.00786 0.00787 0.00788 0.00788 

Source: the authors’ calculations for the system (2) based on (9) using R. 

As can be seen in Fig. 2 and Table 2, the probabilities of the states 0(0) ( )P t  and

0(1) ( )P t are relatively large, while the other probabilities are close to zero and exhibit 
small, damped oscillations. The convergence of the probabilities 0(0) ( )P t  and 0(1) ( )P t to 
their steady state values is shown in Fig. 3. 

 
Fig. 3. Convergence of the probability 0(0) ( )P t to its steady state value. 

Source: authors’ calculations using R 

We now change the distribution of the initial state to P(0)T = (0.1 0.2 0 0 0 0.7 0 0 0 ... 0), 
in order to study the effect of the initial state on the general solution given by (9) for the 
system (2). Obviously, the steady state solution of the system (2) is unchanged and, as 
in the previous case, 6 s the distribution of the states is very close to the stationary 
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distribution. Figures 4, 5 show the dynamics of 0(0) ( )P t , which is the most significant 
component of the vector P(t). 

 
Fig. 4. Dynamics of the distribution of the states when the initial distribution 

is given by P(0)T = (0.1 0.2 0 0 0 0.7 0 0 0 ... 0. 
Source: authors’ calculations using R 

 
Fig. 5. Dynamics of the distribution of the states when the initial distribution 

is given by P(0)T = (0.1 0.2 0 0 0 0.7 0 0 0 ... 0).  
Source: authors’ calculations using R 

We now investigate how increasing the queuing capacity of the system (1) affects 
its functioning. It is assumed that the system can now hold 20 requests (3 being served 
and 17 in the queue), i.e. 1 1 17 3 20.N m k      This dramatically increases the 
number of equations describing the system up to 42. The effect of these changes on the 
dynamics of the system are illustrated in Figs. 5–7. 
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Fig. 6. Effect of increasing the queuing capacity of the system  
on its dynamics N = 20.  Source: authors’ calculations using R 

From Figures 6, 7, it is obvious that an increase in the queuing capacity of the system 
given by (1) from 6 to 20 does not significantly affect the steady state functioning of the 
system (the probability of there being more than six requests in the system is very small). 
As in the previous cases, the system reaches its steady state distribution in ca. 8 s. 

Recall that the results shown in Figs. 2–7 and Tables 1, 2 are obtained based on the 
fact that the input parameters are set based on the green state of the servers. Thus the 
relative load on the servers is 67%. 

 

Fig. 7. Dynamics of 0(0) ( )P t  after increasing the capacity  
of the queue N = 20. Source: authors’ calculations using R 

We now change the server’s settings to the red state. According to [3], the intensity 
of admissions is 3 queries/s. It is assumed that the server declines 30% of these queries, 
i.e., 0.90 queries/s and the server response time per query is (95th percentile) 635 ms. 
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Thus  = 3 queries/s, 0 = 0.90 queries/s, = 1/0.635 = 1.57 queries/s, 0 1/0.635 = 1.57 
queries/s. 

Equations (9) and (14) are used to determine the dynamics of the system (2). A histo-
gram of the steady state probabilities of the server’s performance is shown in Fig. 8. As we 
can see, 0(0) 0.0437P  . Therefore, according to [13], utilization – fraction of time the server 

is busy equals to 0(0)1 ,P    or the utilization is 100 – 4.37 = 95.63% of system capacity. 
Moreover, the greatest changes occur in the probabilities 0(0)P  and 3(3) .R  We need to take 
into consideration how to change the server’s output time in the steady state mode with the 
output parameters corresponding to the red state. Figures 9, 10 indicate that the system 
reaches steady state mode in ca. 10 s. 

 
Fig. 8. The steady state distribution of the state of the system in the red state.  

Source: the authors’ calculations using R for the system (2) based on (14) 

 
Fig. 9. Dynamics of P0(0)(t) in the red state. 

Source: authors’ calculations using R 

After careful analysis of the results of the simulations, it can be argued that the 
system evolves relatively quickly to essentially the same steady state regardless of the 
initial distribution, and the queue capacity (for m1 ≥ 3). The relative load on the system 
in the steady state is only really affected by the service time (given a fixed arrival rate). 
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Fig. 10. Dynamics of the distribution of the state of the system in the red zone. 

Source: authors’ calculations using R 

5. Conclusions and follow-up research 

In the modern world, the use of cloud computing is a part of everyday life, covering 
all the vital spheres of business and related infrastructure, the functioning of the state 
and e-government. It is becoming an activity of daily life for ordinary people in every 
country of the world. 

The model of a server subject to breakdown presented above gives us the oppor-
tunity to determine the time required to return to the steady state mode of operation after 
the system fails. This, in turn, will help the owner of the cloud server to calculate the 
risks of financial losses due to technological failures. One subject for follow-up research 
is to construct mathematical models to describe the entire infrastructure of a cloud ser-
vice. Besides this, it would be logical to consider various types of distributions describ-
ing the input and output flows of the queuing system. Therefore, the authors plan to use 
M/G/k and then G/G/k systems to create mathematical models to analyse the entire in-
frastructure of cloud services. 
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