
O P E R A T I O N S  R E S E A R C H  A N D  D E C I S I O N S 

No. 1 2017 

DOI: 10.5277/ord170103 

Nasrullah KHAN1 

Muhammad ASLAM2 

Kyung-Jun KIM3 

Chi-Hyuck JUN4 

A MIXED CONTROL CHART ADAPTED TO THE TRUNCATED 

LIFE TEST BASED ON THE WEIBULL DISTRIBUTION 

The design of a new mixed attribute control chart adapted to a truncated life test has been pre-

sented. It was assumed that the lifetime of a product follows the Weibull distribution and the number 

of failures was observed using a truncated life test, where the test duration was specified as a fraction 

of the mean lifespan. The proposed control chart consists of two pairs of control limits based on a bi-

nomial distribution and one lower bound. The average run length of the chart was determined for vari-

ous levels of shift constants and specified parameters. The efficiency of the chart is compared with an 

existing control chart in terms of the average run length. The application of the proposed chart is dis-

cussed with the aid of a simulation study.  
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1. Introduction  

A control chart is one of the most important tools for monitoring a manufacturing 

process in industry. Time series of statistics of interest are plotted on the control chart 

to see whether the process is under control or out of control. If a plotted statistic is above 
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the upper control limit (UCL) or below the lower control limit (LCL), the process is said 

to be out-of-control. If the statistic lies within the control limits, the process is said to 

be under control. There are many factors which might cause the process to shift from 

the under-control state to the out-of-control state. In this situation, quick indication is 

needed to bring the process back under control. Delay in indicating a problem may cause 

defective products.  

Usually, control charts are designed under the assumption that the quantity of inter-

est follows the normal distribution. In industry, however, it may be possible that the 

quantity of interest follows some non-normal distribution. In such situations, a control 

chart designed under the assumption of normality may mislead an engineer when mak-

ing a decision about whether the process is under control or not. Detailed studies about 

some control charts developed for non-normal distributions can be found in [1–8].  

Further, the selection of control charts according to the type of data collected is an im-

portant issue. If the data are obtained from a counting process, they are called attribute data. 

On the other hand, data obtained from a measurement process are called variable data. For 

attribute data, an attribute control chart, such as an np chart is used, while for variable data, 

a variable chart such as an X-bar chart is used to monitor the process. An attribute control 

chart has the advantage of simplicity in designing the control limits because it usually in-

volves a binomial or Poisson distribution. In general, however, variable data are more in-

formative, so a variable control chart may be more effective. However a variable control 

chart requires knowledge about the probability distribution of the plotting statistic which 

cannot be derived for some non-normal distributions.  

Sometimes, there is a need to use a mixture of attribute and variable control charts 

to monitor a manufacturing process. The use of such a mixed control chart may enjoy 

the combined advantages of both attribute and variable control charts. Recently, [9] de-

signed a mixed control chart to monitor manufacturing processes. [10] designed a mixed 

chart using an exponentially weighted moving average statistic. [10] proposed a mixed 

control chart for attribute data. By exploring the literature on control charts, we note 

that there is no work on designing a mixed control chart adapted to the truncated life 

test. In this paper, we focus on designing a new mixed control chart adapted to the time 

truncated life test based on a Weibull distribution. The application of the proposed chart 

is discussed with the aid of a simulation study. The efficiency of the proposed chart is 

compared with the control chart proposed by [11]. 

2. Design of the proposed control chart 

It is assumed that the lifetime of a product (denoted by the random variable X) fol-

lows the Weibull distribution with the scale parameter  and the shape parameter  and 

thus has the following cumulative distribution function (cdf): 
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The average lifetime based on this Weibull distribution is given as follows: 
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If the shape parameter is known, then the transformed variable Y X   follows an 

exponential distribution with mean . 

Let 0 be the average lifetime when the process is under control, which corresponds 

to the scale parameter 0. It is assumed that the scale parameter changes to 1 0 ,c   

while the shape parameter remains unchanged, when the process is shifted. 

In this section, we will propose a mixed type of control chart utilizing the failure 

data from a truncated life test. 

Step 1. Take a sample of size n from the production process. Test them until the 

specified time t0.  

Step 2. Count the number of failures (d, say) in Step 1. Declare the process to be 

out-of-control if 1d UCL or 1.d LCL  Declare the process to be under-control if 

2 2.LCL d UCL   Otherwise, go to Step 3. 

Step 3. For the sample described in Step 1, obtain the time to failure of item i (de-

noted by ).iX  Set 0iX t  if item i has not failed by time 0 .t  Calculate 
i iY X   and .Y  

Declare the process as out-of-control if 
3.Y L  Declare the process as under-control if

3.Y L   

We call the proposed control chart a mixed control chart because Step 2 is based on 

attribute data and Step 3 is based on variable data. There are two pairs of control limits 

in Step 2 which will be described later, while there is one cutoff value in Step 3. Using 

the two pairs of control limits, a quick decision can be made as to whether the number 

of failures is small or large and the second decision will be made based on the failure 

times when the number of failures is moderate. 

2.1. Control limits and in-control ARL 

We will first derive the necessary measures used for the proposed control chart 

when the process is under control. It would be convenient to select the specified test 

time 0t  as a fraction of the in-control mean 0 ,  i.e. 0 0  ,t a  where a is a constant. For 
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example, when a = 0.5, the test time is the half of the mean lifetime of a product when 

the process is under control. Thus, the number of failures by time 0t  (denoted by d) 

follows a binomial distribution with parameters n and 0 ,p  where 
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Therefore, we propose two pairs of chart limits to be used in Step 2 as follows:  

  1 0 1 0 01UCL np k np p    (4a) 

  1 0 1 0 0max 0, 1LCL np k np p       (4b) 

  2 0 2 0 01UCL np k np p    (5a) 

  2 0 2 0 0max 0,  1LCL np k np p      (5b) 

where 1k  and 2k  are control coefficients to be determined.  

The distribution of Y  in Step 3 can be approximated by a normal distribution ac-

cording to the central limit theorem. The mean and the variance are derived as follows: 

      0 0 0 0| |E Y E Y E Y Y t P Y t E Y Y t P Y t                      (6) 

It should be noted that for the Weibull distribution we take a power transform be-

cause the transformed variable follows an exponential distribution and the sum of Y’s 

(or )Y follows a gamma distribution. Thus, Eq. (4) can be written as  
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The variance of Y  can be written as follows:  
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After simplification, Var Y   can be rewritten as  
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Therefore, the probability of the process being declared under control using the pro-

posed chart when the process is actually under control is given as follows: 

  ,0 10 20 30inP f f f    (11) 
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The performance of the proposed control will be evaluated using the average run 

length (ARL), which is used to indicate the mean length of time that passes before the 

process is declared out-of-control. When the process is under control, the ARL (called 

the under-control ARL) should be large. However, when the process has shifted, the ARL 

(called the out-of-control ARL) should be small as possible. The ARL for a process under 

control is denoted by ARL0 and given as follows:  
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2.2. Out-of-control ARL 

Next, we derive some necessary measures under the assumption that the process has 

shifted. Suppose that there has been a change in the scale parameter of the Weibull 

distribution, while the shape parameter remains unchanged. The scale parameter of the 

Weibull distribution is assumed to be shifted to 1 0 ,c   where c  is a shift constant 

smaller than 1. For the shifted process, the probability of being declared under control 

using the proposed chart is given as follows: 
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Table 1. The values of ARLs when  = 1 and 0
 = 50 

 a 

0.1 0.2 0.4 0.5 0.7 0.9 1 

k1 3.5559 3.3293 3.6768 3.0176 3.8526 3.9595 3.4987 

k2 1.0175 1.0871 1.3476 1.3078 1.2570 1.1387 1.2709 

L3 4.3314 7.9410 14.0947 14.5024 20.2793 22.8383 24.3463 

c ARL 

1.0 370.75 370.78 370.11 370.01 370.04 370.04 370.15 

0.9 174.40 147.07 134.59 140.67 113.68 104.73 119.41 

0.8 78.02 54.92 40.83 45.69 29.21 25.92 28.12 

0.7 33.11 19.68 12.03 14.47 7.98 7.14 7.14 

0.6 13.49 7.13 4.02 4.78 2.76 2.56 2.42 

0.5 5.47 2.85 1.74 1.89 1.37 1.33 1.26 

0.4 2.39 1.43 1.10 1.11 1.03 1.03 1.01 

0.3 1.29 1.04 1.00 1.00 1.00 1.00 1.00 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 2. The values of ARLs when  = 1 and 0
 = 100 

 a 

0.1 0.2 0.4 0.5 0.7 0.9 1 

k1 3.4517 3.4202 3.0933 3.0369 3.2420 3.1057 3.6698 

k2 1.1968 1.0491 1.3807 1.2698 1.3105 1.2148 1.4681 

L3 8.7254 15.8817 26.8782 29.0040 39.3605 44.9779 48.6938 

Shift ARL 

1.0 371.77 370.94 370.04 370.01 370.03 370.05 370.00 

0.9 168.06 147.13 129.77 140.67 130.45 168.86 119.37 

0.8 71.99 54.94 41.37 45.69 32.88 39.54 28.11 

0.7 29.58 19.68 12.81 14.47 8.61 9.31 7.14 

0.6 11.93 7.13 4.26 4.78 2.81 2.84 2.42 

0.5 4.92 2.85 1.78 1.89 1.34 1.33 1.26 

0.4 2.23 1.43 1.10 1.11 1.02 1.02 1.01 

0.3 1.25 1.04 1.00 1.00 1.00 1.00 1.00 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

The distribution of Y  for the shifted process can be approximated by a normal dis-

tribution with mean and variance of 
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Table 3. The values of ARLs when  = 1.5 and 0
 = 50 

 a 

0.1 0.2 0.4 0.5 0.7 0.9 1 

k1 3.9668 3.5200 3.2525 3.3891 3.7946 3.2213 3.2230 

k2 1.3801 1.3652 1.2562 1.0732 1.4216 1.1535 1.4034 

L3 10.5079 28.3449 68.1557 92.5725 136.1281 167.3669 187.2779 

Shift ARL 

1.0 373.74 370.14 370.03 370.01 370.08 370.02 370.00 

0.9 170.18 139.02 99.09 86.87 74.66 64.00 77.30 

0.8 77.52 48.25 25.45 18.23 12.85 9.89 10.35 

0.7 35.07 15.93 6.76 4.52 3.09 2.41 2.33 

0.6 15.43 5.44 2.24 1.67 1.32 1.16 1.13 

0.5 6.50 2.18 1.17 1.06 1.01 1.00 1.00 

0.4 2.73 1.21 1.00 1.00 1.00 1.00 1.00 

0.3 1.35 1.01 1.00 1.00 1.00 1.00 1.00 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Table 4. The values of ARLs when  = 1.5 and 0
 = 100 

 a 

0.1 0.2 0.4 0.5 0.7 0.9 1 

k1 3.6693 3.6363 3.2196 3.4942 3.6762 3.2922 3.1810 

k2 1.4652 1.2119 1.4407 1.1742 1.0897 1.0674 1.0022 

L3 29.7235 79.7077 194.1979 261.8349 379.8089 473.3809 499.9637 

Shift ARL 

1.0 370.55 370.06 370.09 370.00 370.17 370.08 371.48 

0.9 168.88 124.66 96.96 86.87 64.57 64.01 64.53 

0.8 77.03 40.62 24.25 18.23 11.42 9.89 9.80 

0.7 34.90 13.36 6.40 4.52 2.91 2.41 2.38 

0.6 15.37 4.75 2.15 1.67 1.29 1.16 1.15 

0.5 6.49 2.02 1.16 1.06 1.01 1.00 1.00 

0.4 2.73 1.18 1.00 1.00 1.00 1.00 1.00 

0.3 1.35 1.01 1.00 1.00 1.00 1.00 1.00 

0.2 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 5. The values of ARLs when  = 2 and 0
 = 50, n = 100 

 a 

0.1 0.2 0.4 0.5 0.7 0.9 1 

k1 5.2816 5.0374 4.1635 2.9966 3.0321 4.3334 3.0878 

k2 1.0075 1.2602 1.2409 1.3252 1.4420 1.0335 1.2614 

L3 24.5640 96.3703 358.6161 521.8815 925.2349 1338.6727 1464.6992 

Shift ARL 

1.0 370.36 371.18 370.14 370.04 370.00 370.00 370.03 

0.9 116.33 77.23 31.74 27.54 12.80 8.21 10.16 

0.8 39.57 16.40 4.10 2.96 1.48 1.26 1.19 

0.7 14.38 4.34 1.33 1.10 1.00 1.00 1.00 

0.6 5.57 1.68 1.01 1.00 1.00 1.00 1.00 

0.5 2.39 1.07 1.00 1.00 1.00 1.00 1.00 

0.4 1.28 1.00 1.00 1.00 1.00 1.00 1.00 

0.3 1.01 1.00 1.00 1.00 1.00 1.00 1.00 

0.2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

Thus, 
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or equivalently 
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  (18) 

Hence, the out-of-control ARL for the shifted process is given from Eq. (19). 
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The values of the ARLs for various values of the target mean 0,  and sample size 

n = 30 are reported in Tables 1–5.  

From the tables, we note the following trend in the ARL values. 

• When all other parameters are fixed, the ARL increases as the target ARL0 increases.  

• When all other parameters are fixed, the ARL increases as 0 increases.  

• When all other parameters are fixed, the ARL increases as   increases.  

3. Comparative study 

In this section, a comparison of the proposed chart with the one proposed by Aslam 

et al. [11] is given. The efficiency of the proposed chart has been compared in terms of 

the ARLs. A control chart is said to be more efficient than another if it provides smaller 

values of the ARLs for the same values of all the parameters specified. To save space, 

we will present the ARLs by Aslam et al. [11] for 0r  = 370,  = 0.5, a = 0.5, 0.7, 0.9, 

and 0 = 100 (Table 6). 

Table 6. Comparison of the present method with the one proposed by Aslam et al. [11] 

 a 0.1 0.5 1 

  Present Aslam et al. [9] Present Aslam et al. [9] Present Aslam et al. [9] 

    k1 = 3.9668   k1 = 3.3891   k1 = 3.2230 

  k = 3.266246 k2 = 1.3800 k = 2.9755 k2 = 1.0731 k = 2.957346 k2 = 1.4033 

Shift 
n = 21 L3 = 10.50 n = 30 L3 = 92.57 n = 49 L3 = 187.27 

ARL 

1.0 405.82 373.74 375.23 370.01 373.93 370.00 

0.9 229.89 170.18 144.44 86.87 129.96 77.30 

0.8 124.42 77.52 48.17 18.23 28.54 10.35 

0.7 63.95 35.07 16.07 4.52 7.28 2.33 

0.6 31.02 15.43 5.70 1.67 2.47 1.13 

0.5 14.16 6.50 2.35 1.06 1.27 1.00 

0.4 6.12 2.73 1.28 1.00 1.02 1.00 

0.3 2.61 1.35 1.02 1.00 1.00 1.00 

0.2 1.28 1.01 1.00 1.00 1.00 1.00 

0.1 1.00 1.00 1.00 1.00 1.00 1.00 

0.01 1.00 1.00 1.00 1.00 1.00 1.00 

 

From Table 6, we note that the proposed control chart provides smaller values of 

the ARLs as compared to the one proposed by Aslam et al. [11]. For example, when  

c = 0.9 and a = 0.5, the ARL for the proposed chart is 87, while it is 144 for the existing 

control chart. The performance of the proposed chart is better for all values of c when 

a > 0.5.  
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4. Simulation study  

In this section, we discuss the implementation of the proposed mixed chart for 

a time truncated life test using simulated data. The first 20 observations of subgroups of 

size n =30 are generated from the Weibull distribution with   = 1.5 and 0 = 55.0 so 

that 0 = 50. The next 20 observations are generated from the Weibull distribution with 

 = 1.5, and 1 = 0.6×55.0.  

Let us choose a = 0.10. Thus, the test time will be t0 = a0 = 5.0. Hence, we declare 

a failure if the lifespan generated is smaller than 5. We counted the number of failures 

in each subgroup, which is listed here: d’s: 0, 1, 1, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 

0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 2, 1, 0, 0, 5, 2, 0, 1, 1, 0. From Table 3, the two control 

chart constants and L3 are given by: 1 3.9668,k   2 1.3801,k  3 10.51.L   

Also, we have 
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Fig. 1. The proposed control chart for simulated data 

Therefore, the two pairs of control limits using the proposed chart for these simu-

lated data are given as follows:  
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 

 

1 0 1 0 0max[0, 1 ]

max 0, 30 0.027 3.9668 30 0.027 1 0.027 0

LCL np k np p  

       

 

 

 

2 0 2 0 01

30 0.027 1.3801 30 0.027 1 0.027 ] 2

UCL np k np p  

     
 

 

 

2 1 0 2 0 0max 0, 1

max 0, 30 0.027 1.3801 30 0.027 1 0.027 0

LCL LCL np k np p     

       

 

We plotted the number of defects in Fig. 1 along with the two pairs of control limits. 

The proposed chart requires Step 3 (calculating Y ) only when the number of failures is 

3 (between 2 and 4) but there are no such cases for these data. We note that the proposed 

chart detects the process shift based on the 14th set of observations after the actual shift.  

5. Concluding remarks 

A mixed control chart for a life test is proposed by assuming that the lifetime of 

a product follows the Weibull distribution. Extensive tables are provided for industrial 

use. The application of the proposed chart is discussed with the help of simulated data. 

The efficiency of the proposed chart is compared with an existing chart and it is con-

cluded that the proposed chart is more efficient in detecting a shift in the manufacturing 

process compared to the existing control chart. Proposals for charts based on other non-

normal lifespan distributions should be considered in future research.  
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