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NEW METHOD OF SELECTING EFFICIENT PROJECT  

PORTFOLIOS IN THE PRESENCE OF HYBRID UNCERTAINTY 

A new methods of selecting efficient project portfolios in the presence of hybrid uncertainty has 

been presented. Pareto optimal solutions have been defined by an algorithm for generating project port-

folios. The method presented allows us to select efficient project portfolios taking into account statisti-

cal and economic dependencies between projects when some of the parameters used in the calculation 

of effectiveness can be expressed in the form of an interactive possibility distribution and some in the 

form of a probability distribution. The procedure for processing such hybrid data combines stochastic 

simulation with nonlinear programming. The interaction between data are modeled by correlation ma-

trices and the interval regression. Economic dependences are taken into account by the equations bal-

ancing the production capacity of the company. The practical example presented indicates that an in-

teraction between projects has a significant impact on the results of calculations. 

Keywords: portfolio selection, data processing, hybrid uncertainty, random fuzzy sets 

1. Introduction 

Project selection is a complex decision making process implemented in an uncertain 

environment. Randomness and imprecise or missing information are two sources of un-

certainty [4, 11, 19, 32]. In practice, the most common situation occurs when some pa-

rameters of investment projects are specified by a probability distribution, while others 

are given in the form of fuzzy numbers [11]. Therefore, it is necessary to take both ways 

of describing uncertainty into account in order to select efficient project portfolios.  

Ferson and Ginzburg [10] suggested that distinct methods are needed to appropriately 
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represent random variability (often referred to as objective uncertainty or aleatory un-

certainty) and imprecision (often referred to as subjective uncertainty or epistemic un-

certainty). 

Many methods for selecting portfolios investment projects which take into account 

uncertainty of parameters when calculating effectiveness have been presented in the 

literature [1–3, 8, 18, 23, 24, 28, 29, 34]. These methods for building efficient project 

portfolios use probability distributions to describe uncertainty regarding parameters in 

the calculation of effectiveness. 

The literature also presents methods for selecting project portfolios based on the 

assumption that uncertainty regarding parameters is expressed in the form of possibility 

distributions when calculating effectiveness. Such methods have been proposed by 

Huang [15], Liu and Iwamura [22], Chan et al. [5] and Tavana et al. [33]. The concepts 

presented by these authors for selecting efficient project portfolios under conditions of 

fuzziness do not take into account the fact that statistical dependencies between projects 

exist. In the selection process, projects are generally treated as economically independ-

ent. This limits the practicality of these models by a considerable degree. 

We speak of a statistical dependency between investment projects when a correla-

tion exists between the benefits generated by the projects [8, 28, 29, 34]. When a port-

folio contains negatively or weakly positively correlated projects, we obtain a low port-

folio risk. This correlation is due to the correlation between the parameters used to 

calculate efficiency. For example, there is a correlation between the prices of an enter-

prise’s products and raw material prices. In addition the size of the markets for different 

product ranges are correlated [26]. 

Besides statistical dependencies, there may be economic dependencies between in-

vestment projects. Economic dependencies indicate the manner in which a given project 

affects the benefits generated by other projects or benefits obtained from the activity of 

the firm to date. Investment projects may therefore be economically independent (when 

no such effect exists) or economically dependent (when such an effect exists) [8]. 

Among economically dependent projects, we can define: complementary projects, 

mutually dependent projects, substitute projects, mutually exclusive projects [8, 29]. In 

the case of positive economic dependencies, the benefit generated by a given investment 

project leads to increased benefits generated by another one. At this time, synergy oc-

curs, and such projects are described as complementary projects. However, in the case 

of mutually dependent projects, either all qualify for implementation or none. On the 

other hand, negative economic dependencies occur when the benefits obtained from one 

project decrease as a result of the implementation of another project. Such projects are 

described as substitute projects. In the case of mutually exclusive projects, only one can 

qualify for the implementation. 

Rębiasz [26] presented a method for selecting of efficient project portfolios, in 

which uncertainty can be expressed either in the form of probability distributions or in 

the form of possibility distribution. This method takes into account the statistical and 
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economic dependence between projects. In the literature there are examples of methods 

of constructing investment portfolios of financial assets, where uncertainty is described 

by fuzzy random variables [13, 17]. 

The above brief review indicates that the majority of authors use either probability 

or possibility distributions in investment analysis. One of the problems limiting the ap-

plication of hybrid data is the imperfection of the methods of processing such data. 

However, there are a few studies which describe methods of processing hybrid data 

[4, 6, 12]. Guyonnet et al. [12] and Cooper et al. [6] propose a method of processing 

data in the case where both probability and possibility distributions are involved. Some 

of the proposed methods for hybrid data processing combine stochastic simulation with 

the arithmetic of fuzzy numbers [6, 12]. Baudrit et al. [4] use probability and possibility 

distributions in risk analysis. They use a procedure for data processing which also com-

bines stochastic simulation with the arithmetic of fuzzy numbers. In the methods of 

processing hybrid data developed by the authors mentioned above, it was assumed that 

data were independent. In the case of selecting investments, data are usually correlated. 

Summarizing one can say that there are no methods of selecting efficient project 

portfolios in the case where hybrid data are available (data partly described by proba-

bility distribution and partly by possibility distribution). 

This article, at least in part, solves the problem of the lack of such a method. The 

method presented below is a novel solution for selecting of efficient project portfolios. 

The proposed method allows the use of hybrid data. In order to process hybrid data an 

original method is used, which takes into account the correlation between such data. In 

the course of selecting investment projects, statistical and economic dependences be-

tween the projects are taken into account. 

The rest of this paper is organized as follows: in Section 2, the basic idea related to 

Dempster–Shafer (D–S) theory, fuzzy random variables, methods of processing hybrid 

data, and measures of risk in the case of hybrid data are presented. The definitions and 

concepts presented here are used in the description of the proposed method of selecting 

efficient project portfolios. This method is introduced in the Section 3. The formulation 

of the problem and algorithm for selecting efficient project portfolios are presented. In 

Section 4, a case study is used to demonstrate the applicability and utility of the pro-

posed method. Finally, in Section 5, the basic conclusions are presented. 

2. Preliminaries 

2.1. Dempster–Shafer (D–S) theory of evidence 

The theory of belief functions (also called evidence theory) was introduced by 

Shafer [30]. This theory provides mathematical tools to process information which is 
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simultaneously random and imprecise. Contrary to the probability theory, which assigns 

probability weights to atoms (the reference elements), the theory of evidence may assign 

such weights to any subsets, called focal sets. Most often we obtain a sample of random 

intervals. In this case, the information is presented in the form of the intervals [ , ]jia a  

for I = 1, 2, ..., I. The probability pi is assigned to the i-th interval. That is, we obtain 

a mass distribution pi on these intervals. The probability mass pi can be freely re-allo-

cated to points within the interval [ , ]iia a . However, there is not enough information to 

do this. 

Evidence theory defines two indicators, plausibility Pl and belief Bel, to quantify 

the validity of the proposition stating that the value of the variable X should lie within 

the set A (a certain interval, for example). The plausibility Pl and belief Bel measures 

are defined from the mass distribution [30] 

    : 0,1p  P , such that 
 

( ) 1
E

p E


   (1) 

as follows: 

    
,E E A

Bel A p E


   (2) 

      
,  

1
E E A

c
Pl A p E Bel A

 

    (3) 

where  P  – the power set of , E is called a focal element of  P  when   0.p E   

Evidence theory encompasses possibility and probability theory [7, 30]. Thus, any 

the probability or possibility distributions may be interpreted in term of mass functions. 

The method of creating an appropriate probability mass on the basis of possibility dis-

tribution  is described below [4]. 

Let Y be a possibilistic variable. We denote by  the possibility distribution of Y and by 

 the  cuts of . The focal elements for Y corresponding to  cuts are nested and denoted 

by ( ) j = 1, …, q with 0 = 2  > ... q > q+1 = 0. We denote by  (pj  = j – j+1)j = 1, …, q  

the mass distribution associated to ( ) j = 1, …, q. 

We can interpret [Bel, Pl] as upper and lower probabilities induced from specific prob-

ability families. Namely, a mass distribution p may encode the probability family 

           , , , , .p P A Bel A P A P A P A Pl A     P  In this case, we have P = Pl  
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and .P Bel  Hence, we can define (p-box), based on the upper  F x  and lower  F x

cumulative distribution function: 

    [ , ]F x Pl X x    (4) 

    [ , ]F x Bel X x    (5) 

2.2. Fuzzy random variables 

Liu and Liu [20] define fuzzy random variable in the following manner. Let us as-

sume that Z is a set of fuzzy variables. Each element z of the set Z is characterized by 

a membership function z. Let us assume that (, P is a probability space. A fuzzy 

random variable is then defined as a map :ξ Ω  Z such that for each closed subset C 

of the space R. 

        
 

x

sup*

ξ ω
C

ξ ω ξ ω C μ xC 


     (6) 

is measurable function , where   
  is the possibility distribution of the fuzzy varia-

ble  .ξ   Based on a fuzzy random variable, the upper and lower cumulative distribu-

tion functions may be estimated. One can say that each fuzzy variable induces a random 

set [30]. If there are n fuzzy variables  
1, 2. ..,

,i i n
X


 with corresponding probabilities 

 
1, 2, ...,

,i i n
p


 then  

1,..., ; 1,2,...,j q i n  
 are the focal elements of a random set, while val-

ues ijp  ( 1;( )ij i ji j ip p      constitute probability mass of a random set. Based on the 

random set defined, one may determine  F x  and  .F x  

2.3. Method of processing hybrid data 

In the literature, you can find proposals for methods of processing hybrid data [4, 9]. 

These methods do not take into account dependencies (correlation) between the data. 

The method defined by Rębiasz [27] is described below. This method is a modification 

of the method presented by Baudrit et al. [4] and Dubois et al. [ 9] and allows us to take 

into account the correlation between hybrid data. Here the dependences between varia-

bles are modeled by correlation matrices and interval regression. 
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Let us assume that we want to determine the value of  ˆf X  where 

 1 2
ˆ , , ..., mX X X X  is a vector of variables burdened with uncertainty. It is assumed 

that n variables (n < m) are random variables  1 2, , ..., nX X X  and m – n variables  

[Xn + 1, Xn + 2, …, Xm] are possibilistic variables, the values of which are limited by the 

possibility distribution 1 2, , ..., ,n n mP P P   respectively. Additionally, it is assumed that 

subsets K
X  of interactive variables Xi;  , ,K

iX X i K  K  Ks may be defined. Here 

K is the subset of indices of the interactive variables, and Ks is the set of indices of the 

selected subsets of interactive variables.. 

The proposed procedure of determining the value  ˆf X  includes two stages. It com-

bines a procedure for stochastic simulation with a procedure for processing of an interactive 

possibility distribution. In order to process such possibility distributions, nonlinear program-

ming is used. The computational procedure used in this case is the following. The realization 

[x1, x2, ..., xn] of the random variables are drawn using a procedure which accounts for the 

correlation between variables. These values and possibility distributions [Pn + 1, Pn + 2, …, Pm] 

allow us to determine  1 2 1 2x x x, , ..., ,  ,  , ...,  n n n mP P Pf    as a possibility distribution. 

This can be achieved using the concept of -levels. The upper (sup) and lower (inf) 

bounds of the possibility distribution  1 2 1 2x x x, , ..., ,  ,  , ...,  n n n mP P Pf    -level may be 

determined by solving the following nonlinear programming tasks. 

When searching for sup, find: 

  1 2 1 2x , x , ..., x , , , ..., maxn n n mf x x x    (7) 

When searching for inf, find: 

  1 2 1 2x , x , ..., x , , , ..., minn n n mf x x x    (8)  

subject to the following constraints: 

    inf supi i iP x P
 
   for I = n + 1, n + 2, …, m  (9) 

    1 2inf infiz iz

i zx a x a    for , ; ; , , si K z K i z i n z n K K       (10) 

    sup supiz iz

i 1 z zx a x a    for , ; ; , , si K z K i z i n z n K K       (11) 

    1 2inf x infiz iz

i zx a a    for , ; , ; si K z K i n z n K K      (12) 
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    z 2sup x supiz iz

i 1x a a    for , ; , ; si K z K i n z n K K      (13) 

The values 
1 2

,iz iz
a a are the coefficients of the interval regression equations determining 

the dependencies between the variables Xi and Xz. These coefficients may be determined 

using the method proposed by Hladik and Černy (crisp input-crisp output variant) [14]. 

Drawing realizations [x1, x2,...,  xn] and determining  f(x1, x2, …, xn, Pn+1, Pn+2, …, Pm 

is repeated J times. As a result J possibility distributions (
1 , ...,f f

J  ) are obtained. In this 

case, the value  ˆf X  is represented by a random fuzzy variable. 

The above hybrid procedure may be described by the following algorithm [27]: 

START 

Step1. Define 0,  J 

Step 2. Set, j = 1 

Step 3. Randomly generate a vector [x1, x2, xn] taking into account the correlation 

between variables 

Step 4. Set  = 0 

Step 5. Define  -levels  iX


 for i = n + 1, n + 2, m 

Step 6. Define (sup) and (inf) for -levels for the possibility distribution defining 

 ˆ .f X  Find  1 2 1 2,
x x x max, , ..., , , , ...,n n n mj

f x x x     

 2 1 21,
x x x min, , ..., , , , ...,n n n mj

f x x x
     

with the problem constraints specified by inequalities (9)−(13) 

Step 7. Set     

Step 8. If  ≤ 1 goto Step 5 

Step 9. Set j = j + 1 

Step 10. If j J  goto Step 3 

Step 11. Define the set of possibility distributions (
1 , ...,f f

J  ) 

STOP 

In this case, the f

j for j = 1, …, J are determined by the intervals 
,,

[ , ]jj
f f 

for 

, , 2 , ..., 1.o o o      

2.4. Measures of risk in the case of hybrid data 

As a result of processing hybrid data we obtain a random fuzzy set. A problem arises 

regarding how to define easily interpretable measures of the risk in this case. 

One can use here the method of defining the expected value and variance of a ran-

dom fuzzy set. The expected value of a random fuzzy set is defined in various ways. 
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Most frequently, it is defined in the form of a fuzzy set [25]. However, in investment 

analysis, the expected value should rather be expressed in scalar form [20]. This facili-

tates interpretation of the results. Methods using such values are generally accepted by 

practitioners. 

Liu [21] proposed a new method for calculating the expected value and the variance 

of a fuzzy random variable. He expresses these values in a scalar form. The expected 

value  E   of a normal fuzzy variable  defined in the probability space (, , P) is 

given by the following formula: 

          

0 0

E cr x dx cr x dx P d


     
  

    
 
    (14) 

where   cr    is the credibility distribution of . 

Furthermore, the above authors define the variance of a fuzzy random variable using 

the formula: 

   2
[( [ ]) ]Dev E E     (15) 

These equations can be used to determine the expected value and standard deviation 

based on a random fuzzy set which is the result of the processing of hybrid data. 

Another method for estimating measures of risk is the use of the upper and lower 

cumulative distribution function (p-box). As was stated in Section 2.2, these functions 

can be extracted from a random fuzzy set based on the belief and plausibility functions. 

In the case of discrete upper and lower cumulative distribution functions, as is typically 

obtained from the algorithm defined in Section 2.3, this comes down to assigning 

a probability weight  1/jp J   to each of a finite set of intervals 
,,

[ , ]jj
f f 

for 

, , 2 , ..., 1;o o o      j = 1, 2, …, J. 

In order to determine easily interpreted risk measures, p-box can be converted into 

a cumulative distribution function describing the analyzed variable. To perform this 

conversion, one can use one of the many available concepts. Here several strategies for 

building a cumulative distribution function based on the upper and lower cumulative 

distribution are considered. 

Dubois and Guyonnet [9] define three approaches to selecting a single probability 

function on the basis of the p-box, namely: 

1. Applying the Laplace principle of insufficient reason to each focal set 
,,

[ , ],jj
f f 

thus changing it into a uniformly distributed probability density function F,j   on 
,,

[ , ],jj
f f 
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and using the function F1 = 
0 0

, ,

, , ...,1; 1,...,

j j

j J

p F 
    

  to compute the expected value 

and variance. 

2. Replacing each focal set 
,,

[ , ]jj
f f 

 with a value 
, ,, ,

([ , ]) [ , ],j jj j
f ff f f  

  

where f  is increasing in both end points; then use the probability distribution function F2 in-

duced by the probability assignment 
,,

([ , ]),jj
ff f 

 p, j, 0 0
, , ..., 1;     j = 1, ..., J; 

to compute the expected value and variance. 

3. Directly selecting a cumulative distribution function F3 such that F3(x) =  ( ,g F x

 F x     , .F x F x 
   

The first method was proposed by Smets [31] under the name of pignistic transfor-

mation. The second method was advocated by Jaffray and Fabrice [16]. The third 

method is more in line with so-called credibility theory developed by Liu [21]. Here 

a cumulative distribution function is reconstructed from the belief and plausibility func-

tion. This approach, proposes to compute a single indicator as a weighted average of the 

bounds on a focal element. It achieves a trade-off between optimistic and pessimistic 

estimates according to the equation: 

        1F x F x F x     (16) 

3. Proposed method of selecting of efficient project portfolios 

3.1. Formulating the problem of selecting efficient project portfolios 

The developed method of selecting efficient portfolios of investment projects is 

adapted to conditions faced by enterprises realizing multi-stage production processes. 

One such industry is the metallurgical industry. A mathematical model used for select-

ing efficient project portfolios was presented in [26]. To take into account the presence 

of hybrid data modifications to the task formulated in this work are necessary. The num-

ber and types of modifications depend on the number and types of parameters that are 

expressed by means of possibilities distribution. In the example presented in Section 4, 

product prices, raw material prices and indicators of the consumption of raw materials 

per unit of production were defined using possibility distributions. The modifications 

relate to these cases. 

The model consists of three groups of equations. The first group includes equations 

defining the production capacity of the company, depending on the portfolios of projects 

qualified for implementation. This group also includes equations regarding a company’s 
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material balance, and equations determining the conditions for selecting portfolios of 

investment projects. The second group of equations are financial equations. They enable 

the development of a company’s financial forecasts based on a selected portfolio of 

investment projects and a given forecast for the parameters used in the calculation of 

effectiveness. The third group of equations describe the correlations between the prices 

of product and prices of raw material and determines the constraints on the variables 

defining per unit consumption indicators for products and raw materials and the varia-

bles defining the prices of products and raw materials. These constraints are defined on 

the basis of appropriate possibility distribution. 

To present the model we adopt the following definitions. An investment project is 

understood to be the modernization or construction of a production department, along 

with the possible construction or modernization of facilities in auxiliary departments. 

To simplify the notation, it is assumed that leaving a production department in its current 

state is one of the possible investment projects. In the algorithm for selecting of efficient 

project portfolios presented below, it is assumed that any project, which is defined as 

not changing the current state of the appropriate department, is included in the imple-

mentation if no alternative project is selected to be realized. The optimization horizon 

is the number of years for which the net cash flows of the company are being forecasted. 

It is equal to the sum of the duration of capital budgeting and the longest life-cycle of 

the investment projects analyzed. The capital budgeting period is the time interval for 

which the capital budget is developed. 

The following notation is formally used for the model: 

 
N – set of indexes of the individual mutually exclusive projects, 

 I  – set of indexes of products,  

Ij – set of indexes of products produced in department j, 

J – set of indexes of production departments, 

B  – set of indexes of raw materials, 

W – set of indexes of projects, 

WP – set of indexes of projects selected for implementation (project portfolios), 

Wj – set of indexes of proposed projects for production department j, 

WWn – set of indexes of the n-th set of mutually exclusive projects, 

jwt  – duration of the life cycle of project w implemented in department j, 

t  – time horizon of the optimization, 

  – capital budgeting period, 

jv
 – manufacturing capacity of department j, in year   of the life cycle, t    

pdt – tax rate of interest in year t, 
t

ims  – forecasted market share for product i in year t, 

t

ig  – forecasted apparent consumption of product i in year t, 

ijwkz
 – variable processing cost for product i manufactured in production department j after imple-

menting project w in year  of the life cycle, ,t    
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ijzwm
 – amount of product i required for producing a unit of product z in department j after imple-

menting project w, in year   of the life cycle, ,t    

bijwm
 – amount of raw material b required for producing a unit of product i in department j after im-

plementing project w in year   of the life cycle, ,t    
t

ic  – selling price of product i in year t, 

t

bc  – price of raw material b in year t, 

ς

jwη  – forecasted investment outlay in year t for project w in department j whose implementation 

started in year , ,t    
ts 

 – index representing the value of loan repayments in year t for the loan taken out in year ,τ  
tbp  – current ratio in year t, 

tsq  – cash ratio in year t, 

tcz  – inventory turnover ratio in year t, 
tcna  – days sales outstanding ratio for year t, 

tczb  – days payable outstanding ratio for year t, 

1 2,iz iza a  – coefficients of interval regression equation defining relation between prices of product i and z, 

1 2,ib iba a  – coefficients of interval regression equation defining relation between the price of product i 

and the price of raw material b, 

ijzwM 
 – variable determining the amount of product i, required for producing a unit of product z in 

department j, after implementing project w, in year   of the life cycle, ,t    

bijwM 
 – variable determining the amount of raw material b required for producing product i in depart-

ment j, after implementing project w, in year   of the life cycle, ,t    
t

iC  – variable determining the selling price of product i in year t, 

t

bC  – variable determining the price of raw material b in year t, 

t

iG  – variable determining the sales of product i in year t, 

tKRK  – variable determining the value of short-term credit in year t,  

tKRD  – variable determining the value of long-term credit in year t, 

tZKD  – variable determining the value of the long-term loan taken out in year t,  

tZKK  – variable determining the value of the short-term loan taken out in year t,  

tSKK  – variable determining the value of the short-term loan repayments in year t,  

tKC  – variable determining the cost of goods sold in year t, 
tZO  – variable determining operating profit in year t, 
tZB  – variable determining gross profit in year t, 

tZKO  – variable determining change in net working capital in year t, 
tZN  – variable determining net profit in year t, 

tSP  – variable determining cash value in year t, 

Pr
t

zNCF  – variable determining a company’s net cash flow in year t, 

WPNPV  – variable determining the expected value of the NPV of investment project portfolio WP, 
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WP  – variable determining the value of the standard deviation of the NPV of investment project 

portfolio WP, 

 tξ WP   – function assigning a company’s fixed costs without amortization in year t, to any project portfolio, 

 t WP   – function assigning the value of amortization in year t, to any project portfolio. 

 

The equations from the first group are presented below: 

 The equations for balancing manufacturing capacities in production departments 

 

Pr ,

0, 1, 2, ..., , , , , 1, 2, ...,

j

t

ijw jw jw

i I

j jw

v W

j J w W t t

  

     





      


  

(17)

 

 

1 for
,

0 for

0, 1, 2, ..., , , , , 1, 2, ...,

jw

j jw

w WP
W

w W WP

j J w W t t



     


 

 

      

  

(18)

 

 
0

1 for ,jw jW j J w W




 

    (19) 

 1
n

τ

jw

j WW

W


  for n N  (20) 

 jw 0

0j

t
τ t

jw

j J w W

η W η

  

  for 0, 1, 2, ...,t  t   (21) 

 The equations for balancing the company’s materials 

, ,Pr Pr
j j

t t t t t

ijw izjw zjw i i i

j J w W t j J w W z t

M G g ms  

        

      for ; 0, 1, 2, ...,i I t t   (22) 

Equations (17)–(18) determine the quantity and structure of production in each de-

partment in consecutive years of the optimization horizon depending on the portfolio of 

projects qualified for implementation. The value of the binary variable jwW   indicates 

whether a project is qualified for implementation. This variable also determines the year of 

the budgeting period in which the corresponding project is qualified for implementation. 

After establishing the values of the binary variables ,jwW   the production capacity is deter-

mined for each individual stage of the company’s technological cycle. Equations (19)–(21) 
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determine the feasible sets of projects qualified for implementation. Equation (19) ex-

presses the conditions under which investment projects become mutually exclusive. 

Equation (20) expresses the condition that each project can only qualify for implemen-

tation in one year of the budgeting period. Equation (21) represents the constraint that 

the outlays on projects qualified for implementation are lower in year t than the maxi-

mum values 
0.
t Equation (22) denotes the balancing of the company’s materials. It de-

termines the distribution of production of specific products for sales and for internal 

production use. 

Equations (17)–(22) determine the feasible sets of projects qualified for implemen-

tation, values of the total production of specific departments, values of sales and invest-

ment outlays for the implementation of projects. 

The second set of equations defining the model are financial equations. They are linear 

equations, which for all the above mentioned parameters (determined by Eqs. (17)–(22)), 

determine the individual items of the financial balance sheet, profit and loss statement 

and cash flow reports of the company. They also ensure the preservation of the appro-

priate relations between the projected items of a company’s financial statements. These 

relations are determined by given constraints on the values for selected financial ratios 

used in the financial analysis of a company. Some example equations from this second 

group are presented below. These equations determine the cost of goods sold, operating 

profits, gross profit, net profit, changes in net working capital, cash value, long-term 

and short-term loans, and net cash flow (NCF). An equation which ensures that the value 

of the current ratio does not exceeded its limit has also been presented. These equations 

express dependencies that are well-known in financial studies. Therefore, a detailed 

presentation and discussion of all the equations from the second group has been omitted. 

The equations from this second group are presented below: 

 

   

, ,Pr Pr

for  0, 1, ,  

j j j

t t t t

ijw ijw b bijw ijw

t w W j J i b B t w W j J i

t t

KC k C M

WP WP t t

   

   

 

        

 

   

 
  

(23)

 

 for 0, 1, ...,t t t t

i i

i

ZO C G KC t t


     (24) 

  for 0, 1, ...,t t t t t tZB ZO rk KRK rd KRD t t      (25) 

 
if 0

 for 0, 1, ..., 
if 0

t t

t

t t t

ZB ZB
ZN t t

pd ZB ZB

 
 


  (26) 
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(27)
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(28)

 

 1 0 for 0, 1, ...,t t t tKRK SKK KRK t tZKK        (29) 
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1, 

0 for 0, 1, ...,  t t t t t

t
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 (32) 

The equations from the third group are presented below: 

  inf sup( )t t t

i i ic C c 
   for I  I, t = 1, 2, …, t   (33) 

    inf supt t t

b b bc C c
 
   for b  B, t = 1, 2, ..., t  (34) 

    inf supijzw ijzw ijzwm mM  

 
  for j J, ,i I   

 wW, z W, t = 1, 2, ..., ,t 0, 1, 2, ..., ,τ   t    (35) 

   inf supbijw bijw bijwm M m  

 
   for j J, ,i I  

 w  W, b  B, t = 1, 2, ..., ,t  0, 1, 2, ..., ,τ τ  t    (36) 

    1 2inf inft iz t iz

i zC a C a   for , , ,i I z I i z    t = 1, 2, ..., t   (37) 

    1 2sup supt iz t iz

i zC a C a   for , , ,i I z I i z    t = 1, 2, ..., t  (38) 

    1 2inf inft ib t ib

i bC a C a   for , ,i I b B   t = 1, 2, ..., t  (39) 

    1 2sup supt ib t ib

i bC a C a   for , ,i I b B   t = 1, 2, ..., t  (40) 

The parameters found in these equations: 0, , , , , ,t t t

jw i i jwv g ms t   , , ,t t

jw ijwt kz rk rd  

can be expressed in the form of probability distribution or as crisp value. In our example, 

the parameters , , ,t t

ijzw bijw i bm m c c  are defined in the form of possibility distributions. 
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The multi-criteria problem of choosing efficient project portfolios is defined as fol-

lows: find non-dominated portfolios of investment projects by assuming equations and 

inequalities (17)–(40) as constraints in the model and the following as criteria: 

 maxWPNPV   (41) 

 minWP   (42) 

The method of estimating WPNPV  and WP is presented in Section 3.2. In the following 

section, the algorithm for generating efficient project portfolios is presented. For the opti-

mization problem formulated above, we are looking for the Pareto optimal solutions. 

3.2. The algorithm for selecting efficient investment project portfolios 

The algorithm used to select efficient project portfolios in the case of hybrid data is 

presented below: 

 
    START 

Define lp 

Define the set of non-dominated solutions PE =     

lp = 0 

Repeat 

 Generate WP 

 Calculate the expected value of  NPVWP ( )WPNPV  and standard deviation of 

  ( )WP WPNPV   

  If WPNPV  0 and WP is not dominated by any solution in PE 

   then 

    Add WP to PE 

    Remove from PE all the solutions dominated by the solutions added 

     lp = 0 

   else 

    lp = lp + 1 

   End if 

Until: lp = Lp 

 Present set PE 

    STOP 

The parameter Lp denotes the number of iterations of the algorithm after which the cal-

culation process is terminated if no new solution dominating existing solutions has been 

found. A genetic algorithm is used to generate WP sets. The selection of WP sets is made 

by taking into account the criteria described by formulas (41), (42) and inequalities (18)–(21). 

The expected value and standard deviation of the NPV are estimated by means of 

the method of hybrid data processing described in Section 2.3. After randomly drawing 
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the parameters described by probability distributions, to determine the -level of the 

fuzzy set defining the NPV we should solve a non-linear programming problem. Multi-

ple draws of the parameters described by the probability distributions and calculations 

of the -level of the fuzzy set defining the NPV enables us to determine the expected 

value and standard deviation of the NPV. 

The algorithm for estimating the expected value and standard deviation of the NPV 

is presented below. 

   START 

Define ,  , N 

For n = 1 to N 

 Repeat 

    Generate values of the uncertain parameters described by probability distribution 

    Define -levels for the uncertain parameters described by possibility distributions 

Define the right hand sides of the inequality (17) in accordance with the set WP. Solve the non-

linear programming problem, whose constrains are specified by equations and inequalities (17), 

(22–40). The objective function is expressed by: 

 
 

 
Pr

0 dis

1
max

1

t
t

z WPt
t

NCF n
r




  

Define the right hand side of inequalities (17) assuming that no investment project is qualified for 

execution. Solve the nonlinear programming problem, whose constraints are specified by equa-

tions and inequalities (17), (22–40). The objective function is expressed by: 

 
 
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Pr
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t
t
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NCF n
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Calculate NPVWP(n) =
 

 
0 dis

1
,

1

t
t

WPt
t

NCF n
r 

  t

WPNCF n  is calculated according to formula (43) 

    =  +   

 Until  > 1 

Next n 

    Define the set of possibility distributions ( 1 , ...,NPV NPV

N  ) 

    Calculate the expected value 
WPNPV ( )WPNPV  and standard deviation WPNPV ( )WP  

   STOP 

According to the presented algorithm, realization of each parameter defined by 

a probability distribution a randomly generated. This process takes into account the cor-

relation between these parameters. Next -levels are set for each uncertain parameter 

defined by a possibility distribution. Then, production and sales quantities and also the 

financial results of a company are optimized. Optimization is carried out for two vari-

ants: the former assumes the implementation of a selected portfolio of investment pro-

jects and the latter assumes that it is not implemented. For this purpose, a nonlinear 
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optimization problem is solved. The nonlinear optimization problem is defined by equa-

tions and inequalities (17), (22–40). In the first variant, the optimization criterion is 

given by 

 
 Pr

0 dis

1
max

1

t
t

z WPt
t

NCF
r




   

(where 
 Pr

t

z WP
NCF  denotes the forecasted net cash flows of a company, assuming that invest-

ment project WP is implemented, disr  denotes the discount rate) and in the second variant, 
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
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(where 
 Pr (

t

z
NCF


 denotes the forecasted net cash flows of a company in the case of this 

investment projects not being implemented). 
 Pr (

t

z WP
NCF  and 

 Pr (

t

z
NCF


 are calculated 

according to formula (32). The net cash flows connected with the analyzed portfolio 

( )t

WPNCF  are calculated using the formula: 
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The quantities in formula (43) denoted with an asterisk in superscript (*) are the optimal 

values of the corresponding variables, obtained from solving the optimization tasks men-

tioned above. The subscripts WP and  indicate the values of variables corresponding to 

a selected portfolio WP of investment projects and the case of it not being implemented, 

respectively. The NPV of a selected portfolio is calculated using the following formula: 

 
 0 dis

1

1

t
t

WP WPt
t

NPV NCF
r 

  (44) 

The procedure for randomly generating values of the uncertain parameters in the 

calculation of effectiveness and calculating the NPV for different  is repeated N times. 

As a result, the set of possibility distribution for the NPV of the analysed investment 

project portfolio are found. The expected value and standard deviation of the NPV are 

determined based on the cumulative probability distribution function defined by equa-

tion (16). We assume λ = 0.5. 

4. Numerical examples 

In order to illustrate the applicability and utility of the proposed method, the results 

of calculations for a simple model problem are presented below. The method was veri-

fied on a modification of the example of investment projects for a metallurgical enter-

prise described in [26]. Efficient project portfolios were determined for the production 

setup presented in Fig. 1.  

 

Fig. 1. Diagram of the analyzed production setup; 

production capacity in thousand tonnes is given in parentheses 

For the analysed company, continuous casting semi-products (CC semi-products) 

are the basic production material. The CC semi-products are converted into hot-rolled 
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sheets (HR sheets). The HR sheets are partly converted into cold-rolled sheets 

(CR sheets) and partly sold. The CR sheets are partly sold and partly converted into hot-

dip galvanized sheets (HDG sheets). The HDG sheets are partly sold and partly con-

verted into organic-coated sheets (OC sheets). The latter are all sold. 

The computations took into consideration the uncertainty regarding selected param-

eters. The apparent consumption of the company’s products was defined by normal 

probability density functions. The prices of these products, prices of CC semi-products 

and consumptions of materials per production unit were defined by possibility distribu-

tions. It was assumed, that the remaining parameters in the calculations of the effective-

ness were fixed constants. Table 1 presents the considered investment projects. 

Table 1. Investment projects being taken under consideration 

No. Investment project Investment outlay, thousand USD 

1 Construction of a second HR sheet mill 135 000.0 

2 Construction of a second CR sheet mill 170 000.0 

3 
Construction of a new department  

of OC sheet, production capacity 100 thousand tonnes 
12 000.0 

4 
Construction of a new department of OC sheet,  

production capacity 200 thousand tonnes 
18 000.0 

 

The construction of a new department of OC sheet, production capacity 100 thousand 

tonnes and the construction of a new department of OC sheet, production capacity 200 thou-

sand tonnes were mutually exclusive projects. A budgeting period of three years was as-

sumed when constructing the model. We assume that projects 1 and 2 could be qualified for 

implementation in any year of the budgeting period and projects 3 and 4 in the second and 

third years of the budgeting period. A four-year life cycle is assumed for each project. This 

assumption required using 10 binary variables. The individual binary variables determine 

whether or not to implement the projects listed in Table 1 in the appropriate year of the 

capital budgeting period. Besides these binary variables, there were also 284 continuous 

variables used in the model. There were 342 constraints defined by the model. 

Table 2. Parameters of the probability density functions representing forecasts 

for the apparent consumption of particular product ranges [103 t] 

Year HR sheets (m; ) CR sheets (m;) HDG sheets (m; ) OC sheets (m;  

0  (2 905.4; 123.4) (1 242.3; 72.5) (1 182.7; 69.8) (805.4; 41.5) 

1 (2 971.9; 127.5) (1 288.0; 73.3) (1 187.5; 72.0) (828.2; 42.2) 

2 (2 982.4; 131.4) (1 291.4; 75.2) (1 197.0; 74.0) (846.9; 43.2) 

3 (2 984.5; 131.8) (1 292.0; 78.2) (1 216.1; 75.2) (855.2; 43.7) 

4 (3 071.8; 137.3) (1 332.1; 79.8) (1 256.8; 78.5) (883.1; 44.1) 

5 (3 110.9; 139.3) (1 366.2; 82.5) (1 278.5; 79.0) (908.9; 44.6) 

6 (3 234.2; 140.0) (1 397.1; 82.7) (1 285.2; 79.1) (913.4; 46.0) 

7 (3 317.2; 142.4) (1 407.1; 84.2) (1 291.3; 82.5) (918.0; 46.3) 
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Table 2 presents the parameters of the probability density function representing ap-

parent steel consumption for the company’s products under analysis. Table 3 presents 

the relevant trapezoidal fuzzy numbers representing forecasts of the prices of products 

and of CC semi-products. We assume fixed prices throughout the period of budgeting. 

Table 4 presents trapezoidal fuzzy numbers reflecting indicators of material consump-

tion for the individual stages of processing under analysis. 

Table 3. Trapezoidal fuzzy numbers representing the prices  

of the company’s products and continuous casting semi-products 

Price 

[USD/t] 
Trapezoidal fuzzy numbers 

CC semi-products (410.0; 450.0; 500.0; 550.0) 

HR sheets  (465.0; 515.0; 565.0; 615.0) 

CR sheets (565.0; 615.0; 900.0; 715.0) 

HDG sheets  (785.0; 840.0; 1080.0; 1250.0) 

OC sheets (955.0; 1 120.0; 1250.0; 1 345.0) 

Table 4. Trapezoidal fuzzy numbers representing 

 indicators of material consumption 

Material consumption indicator  

[t/t] 
Trapezoidal fuzzy numbers 

CC semi-products–HR sheets (1.058; 1.064.0; 1.075; 1.078) 

HR sheets–CR sheets (1.105; 1.111; 1.124; 1.130) 

CR sheets–HDG sheets (1.010; 1.020; 1.026; 1.031) 

HDG sheets–OC sheets (0.998; 0.999; 1.000; 1.001) 

 

The prices of individual assortments of steel products and CC semi-products are 

strongly correlated. Similarly, the apparent consumption of particular product ranges 

are correlated. Table 5 presents the correlation matrix for the apparent consumption of 

individual product ranges. Table 6 presents the coefficients of the interval regression 

equations depicting the interrelations between the prices of individual products and of 

CC semi-products. 

The adjusted unit variable processing costs for particular product ranges were also 

defined to be the values given below: 

 

Adjusted unit variable 

 processing cost, USD/tnne 

CC semi-products HR sheet CR sheets HDG sheets OC sheets 

26.5 28.4 28.9 117.8 174.0 

 

The following market share for particular product ranges were adopted in the cal-

culations: 
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Market share 

for particular product ranges 

HR sheets CR sheets HDG sheets OC sheets 

42.5% 40.0% 46.0% 45.0% 

Table 5. Correlation matrix for the apparent consumption  

of metallurgical products manufactured by the analyzed company 

  HR strip CR sheets HDG sheets OC sheets 

HR sheets 1.000 0.878 0.911 0.863 

CR sheets 0.878 1.000 0.915 0.888 

HDG sheets 0.911 0.915 1.000 0.966 

OC sheets 0.863 0.888 0.966 1.000 

Table 6. Coefficients of the interval regression equations depicting the interrelations 

 between the prices of particular product ranges and the prices of CC semi-products 

Independent 

 variable 

Dependent variable 

CC  

semi–products 
HR sheet CR sheets HDG sheets OC sheets 

CC semi- 

-products 

a1  [0.702; 0.880] [0.396; 0.560] [0.353; 0.455] [0.312; 0.421] 

a2  [3.666; 4.595] [101.812; 143.900] [101.805; 131.017] [49.311; 66.675] 

HR sheet 
a1 [1.050; 1.337]  [0.597; 0.790] [0.481; 0.664] [0.394; 0.663] 

a2 [22.011; 28.014]  [112.164; 148.390] [112.607; 155.430] [31.683; 53.319] 

CR 

sheets 

a1 [0.497; 0.697] [0.868; 1.404]  [0.753; 0.917] [0.570; 0.955] 

a2 [128.781; 180.537] [–10.590; –17.121]  [–2.176; –2.650] [–95.300; –159.728] 

HDG 

sheets 

a1 [0.445; 0.568] [0.964; 1.504] [0.980; 1.220]  [0.596; 1.068] 
a2 [127.513; 162.700] [45.667; 71.292] [57.877; 72.083]  [–48.893; –87.593] 

OC 

sheets 

a1 [0.347; 0.539] [0.354; 0.866] [0.808; 1.313] [0.633; 1.123]  

a2 [69.208; 107.604] [385.568; 941.971] [248.176; 403.481] [236.971; 420.889]  

   

Fig. 2. The non-dominated solution 
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Figure 2 presents the set of non-dominated portfolios found using the presented al-

gorithm to select efficient project portfolios. The coefficient of variation CV was calcu-

lated as the ratio between the standard deviation of the NPV and average value of the 

NPV.  

  

Construction of the second hot rolled sheet mill 

– commencement of construction: year 0; 

average value of NPV – 114 544.8 thousand USD, 

standard deviation of NPV – 131 299.8 thousand USD 

Construction of the second cold rolled sheet mill  

– commencement of construction: year 1; 

average value of NPV – 2 449.8 thousand USD, 

standard deviation of NPV –62 195.7 thousand USD 

  

Construction of a new department of organic sheet 

coating (production capacity 100 thousand tonnes) 

– commencement of construction: year 2; 

average value of NPV – 9 929.5 thousand USD, 

standard deviation of NPV – 6 423.7 thousand USD 

An investment portfolio; 

average value of NPV – 521 745.3 thousand USD, 

standard deviation of NPV – 395 746.2 thousand USD 

Fig. 3. Upper and lower cumulative distribution functions for selected projects  

and the investment portfolio of these projects 
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Figure 3 presents the upper and lower cumulative distribution functions,  F x  and

 ,F x  respectively, and cumulative distribution function  (F x  calculated according 

to formula (16)) for the following projects: construction of a second HR sheet mill  

– commencement of construction: year 0, construction of a second CR sheet mill  

– commencement of construction: year 1, construction of a new department of OC sheet 

(production capacity 100 thousand tonnes) – commencement of construction: year 2, 

and these results correspond to a project portfolio which includes the above-mentioned 

projects. 

The data presented in Fig. 2 allow us to state that despite the existence of a strong 

correlation between the prices of steel products and their apparent consumption vol-

umes, the effects of diversifying the portfolio are clearly noticeable. An increase in the 

expected values of the NPV of the investment portfolio, is accompanied by an increase 

in the standard deviations. However, the dynamics of change in the expected values and 

standard deviations of the NPV vary. As a result, the ratio CV varies in the range of 

0.52–1.27. 

The data presented in Fig. 3 illustrate well the effects of the economic dependencies 

between projects. The sum of the expected values of the NPV of the projects under 

analysis is equal to 122 024.5 thousand USD. The NPV of the portfolio, taking into 

account the effects of the economic dependencies between the investment projects, is 

almost 4.3 times greater (521 745.3 thousand USD) than the sum of NPV of the projects 

analysed separately. We can say that the projects included in the portfolio are comple-

mentary projects. 

5. Conclusion 

In the last dozen years or so, the treatment of uncertainty in risk assessments and 

portfolio selection has witnessed a shift of paradigm with an increasing awareness of 

the difference between stochastic and epistemic uncertainties. The lack of any distinc-

tion between these two types of uncertainties has been one of the shortcomings in port-

folio selection and risk assessment. Random variability can be represented by probabil-

ity distribution, imprecision or incomplete information is better accounted by possibility 

distributions (or the families of probability distributions). Therefore new methods com-

bining these two modes of representing uncertainty are needed for the selection of effi-

cient project portfolios. 

A new method for selecting efficient project portfolios has been introduced in this 

paper. This method advances previous works concerning the selection of efficient pro-

ject portfolios. The presented method allows us to select efficient project portfolios tak-

ing into account statistical and economic dependencies between projects in the situation 
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where the data are expressed in the form of interactive hybrid data. The selection of 

efficient project portfolios is formulated as a multi-criteria optimization problem. There-

fore, we seek a set of non-dominated investment portfolios. 

The example calculations presented indicate that economic dependencies signifi-

cantly affect the effectiveness and risk of investment projects. In view of this, selecting 

efficient portfolios without considering such relations would be burdened with a signif-

icant error. 
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