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OPTIMAL ORDERING QUANTITIES  
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WITH COST OF SUBSTITUTION 

An inventory system of two mutually substitutable items has been studied where an item is out of 

stock, demand for it is met by the other item and any part of demand not met due to unavailability of 

the other item is lost. In the event of substitution, there is an additional cost of substitution involved for 

each unit of the substituted item. The demands are assumed to be deterministic and constant. Items are 

ordered jointly in each ordering cycle, in order to take advantage of joint replenishment. The problem 

is formulated and a solution procedure is suggested to determine the optimal ordering quantities that 

minimize the total inventory cost. The critical value of the substitution rate is defined to help in deciding 

the optimal value of decision parameters. Extensive numerical experimentation is carried out, which 

shows that prior knowledge of the critical value of the substitution rate helps to minimize the total 

inventory cost. Sensitivity analysis is carried out for the improvement in the optimal total cost with 

substitution as compared to the case without substitution to draw insights into the behaviour of the 

model. 
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1. Introduction 

We consider an inventory system where a portion of the demand for an item is ful-

filled by some other item. This phenomenon of demand substitution has been studied 

by researchers in great detail. Substitution can happen under a variety of conditions. In 

stochastic conditions, an item is substituted by another item to avoid or minimize the 
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effects of shortages occurring due to uncertainty in the system, whereas in deterministic 

cases, a portion of demand is substituted by another item in a planned manner. In both 

cases, when an item which is primarily demanded is substituted by some other item, an 

additional cost is incurred, known as substitution cost. Such substitution costs may arise 

due to a variety of reasons: the cost of the reworking required on an item to make it 

substitutable for the other, loss of a customer’s goodwill due to substitution, etc. Gen-

erally, it will be based on the number of units substituted. Further, it is also noted that 

an item could either be completely substituted or only partially substituted by another 

item. Accordingly, Kim and Bell [11] categorize substitution into symmetrical substitu-

tion and asymmetrical substitution. Besides cost related reasons, there could sometimes 

be some marketing motives that may also involve item substitutions. 

As can be easily seen, the phenomenon of demand substitution involves multiple 

items (at least two). Also, once an inventory system involves more than one item, then 

the issue of replenishment policy arises, in the sense that items can be procured inde-

pendently, jointly or in a coordinated manner. 

This paper formulates a model of a two-item inventory system with partial substi-

tution, together with any inventory related decisions, and studies the impact of the cost 

of substitution on the performance of the system. The system parameters are assumed 

to be deterministic. Further, a joint replenishment policy for the procurement of the 

items is used, where both items are jointly replenished in every cycle. For the case of 

a two-item inventory system with demand substitution and joint replenishment policies 

(JRP), Drezner et al. [3] developed an EOQ model and compared the results with the 

case of no substitution and showed that full substitution is never optimal. Gurnani and 

Drezner [6] extended the model of Drezner et al. [3] to more than two items, where the 

unmet demand for one item is fully converted to demand for the other. Salameh et al. [21] 

extended the model of Drezner et al. [3] by considering partial substitution. Recently, 

Rasoulia and Nakhai Kamalabadi [20] and Krommyda et al. [12] developed an inven-

tory model similar to that of Salameh et al. [21] by considering the demand to be de-

pendent on price, as well as on stock. 

This paper extends the work of Salameh et al. [21] and Krommyda et al. [12] in 

three directions: (i) introduction of a substitution cost, (ii) analytical derivation of the 

optimal ordering quantities and (iii) studying the effect of substitution on system per-

formance and exploration of the critical value of the substitution rate.  

Regarding replenishment policies for inventory systems dealing with multiple 

items, a considerable amount of work has been reported in the literature. Khouja and 

Goyal [10] provide a detailed review of joint replenishment policies. In the context of 

formulating joint replenishment policies, Porras and Dekker [18, 19] developed models 

for determining optimal order quantities under various ordering conditions. An efficient 

method for deriving optimal (or near-optimal) solutions has always been an issue for 

researchers. In most of the previous studies related to joint replenishment policies, the 

optimal ordering quantities have been obtained by some heuristic search algorithm. 
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Hong and Kim [7] developed a closed form formula to obtain optimal order quantities 

using an unbiased estimator and genetic algorithm. Further, it has been shown by Schulz 

and Telha [22] that in the case of deterministic demand, the complexity of obtaining the 

optimal quantities increases exponentially with respect to time. 

The issue of demand substitution under stochastic demand possesses a very inter-

esting dimension, where substitution becomes an alternative in situations of uncertainty. In-

ventory models of substitution with stochastic demand have been studied by many research-

ers, some major contributions are due to Parlar and Goyal [16], Pasternack and Drezner [17], 

Ernst and Kouvelis [4], Gerchack and Grosfeld [5], Mishra and Raghunathan [15]. Zhao  

et al. [25] studied systems with two items, while Ye [24], Huang and Ke [9], Li et al. [14], 

Li and You [13], Hsieh [8], Xue and Song [23] developed inventory policies for multiple 

substitutable items. 

In this article, we develop an inventory model for two mutually substitutable items 

by taking into account the cost of substitution. If one of the items is out of stock, then 

its demand is partially fulfilled by the second item and the remaining unmet demand is 

lost. The demand for each item is assumed to be deterministic and static. The two items 

are ordered jointly and thus the replenishment cycle for both items is the same. The rest 

of the paper is organized as follows. In section 2, we describe the assumptions and no-

tation used. Section 3 gives the details of the mathematical formulation of the model, 

while Section 4 describes in detail the solution procedure with a proof of the pseudo-

convexity of the total cost function and derivation of the critical value of the substitution 

rate. Section 5 provides some theoretical analysis. Section 6 presents some numerical 

examples and sensitivity analysis. Section 7 presents the conclusions. 

2. Assumptions and notation 

2.1. Assumptions 

A. Demand. The demand rates for the two items are known and constant (determin-

istic and static). 

B. Joint procurement policy. The two items are procured jointly in every ordering 

cycle. 

C. Lead time and rate of replenishment. The procurement lead times are zero and 

replenishment rates for both items are infinite. 

D. Rate of substitution. When an item becomes out of stock and there is on-hand 

inventory of the second item available, then the second item, while still being used to 

satisfy primary demand, is also used to substitute demand for the first item during its 

stock out period. The remaining un-substituted demand for the first item is lost. In the 

case of partial substitution, even when the stocks of the substitute are unlimited, this 
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substitution need not be able to satisfy the whole demand for the stocked out item. 

The amount of substituted demand might be limited to a fraction of the total excess 

demand for an item during its stock out period. The maximum proportion of the num-

ber of units of demand for an item that can be substituted by another item and the total 

excess demand for the first item is known as the substitution rate. If the substitution 

rate is 1, this means that all of the excess demand for an item can potentially be sub-

stituted by the other item and a substitution rate of 0 indicates that no substitution is 

possible.  

E. Mutual substitutability. Both items are mutually substitutable, that is, each one 

can substitute the other in the case of a lack of stock. However, both the cost and rate of 

substitution may differ. 

2.2. Notation 

Parameters 

D1, D2 – demand rates for items 1 and 2, respectively 

a1, a2 – fixed ordering cost per order for items 1 and 2, respectively 

c1, c2 – unit procurement cost for items 1 and 2, respectively 

1, 2 – lost sales cost per unit for items 1 and 2, respectively 

cs12 – unit substitution cost for item 1 if substituted by item 2 

cs21 – unit substitution cost for item 2 if substituted by item 1 

i – inventory holding cost (rate per unit of good per unit time) 

Decision variables 

Q1, Q2 – ordering quantities for item 1 and 2, respectively 

1, 2 – substitution rates for replacing item 1 by item 2 and for replacing item 2 

  by item 1, respectively 

1

e ,
2

e  – critical values of substitution rate for item 1 and item 2, respectively 

Objective functions 

TCWO(Q1, Q2) – total average annual cost without substitution 

TC1(Q1, Q2) – total average annual cost with substitution for the case when item 1 is 

  substituted by item 2 

TC2(Q1, Q2) – total average annual cost with substitution for the case when item 2 is 

  substituted by item 1 
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3. Formulation 

We consider an inventory system with two mutually substitutable items. The inven-

tory diagrams for the three possible situations (item 1 substituted by item 2, item 2 sub-

stituted by item 1 and no substitution) are shown in Figs. 1–3.  

 

Fig. 1. Case 1: item 1 substituted by item 2 (t1 < t2) 

 

Fig. 2. Case 2: item 2 substituted by item 1 (t2 < t1) 

 

Fig. 3. Inventory levels without substitution under joint replenishment 
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At the beginning of the replenishment cycle, Q1 units of item 1 and Q2 units of item 2 

are received. The on-hand inventories deplete at the constant rates of D1 and D2. There 

are three possible cases: 

• Q1 depletes before Q2 (as depicted in Fig. 1), i.e., item 1 becomes out of stock first, 

and item 2 starts partially substituting the demand for item 1 with substitution rate 1. 

Thus a total of 1(D1p) units are substituted at a rate of D1 and consequently the inven-

tory of item 2 experiences a total demand rate of (D2 + 1D1) during the entire period p. 

The remaining (1 – 1)(D1p) units of demand that are not substituted are lost.  

• Q2 depletes before Q1 (as depicted in Fig. 2), i.e., the item 2 becomes out of stock 

first, and item 1 starts partially substituting the demand for item 2 with the substitution 

rate 2. Thus a total of 2(D2p) units are substituted at a rate of D2 and consequently the 

inventory of item 1 experiences a total demand rate of (D1 + 2D2) during the entire 

period p. The remaining (1 – 2)(D2p) units of demand that are not substituted are lost. 

• Q1 and Q2 deplete simultaneously (as depicted in Fig. 3), i.e., items 1 and 2 can 

never go out of stock individually and thus there is no substitution of any of the items. 

In the event of substitution, i.e., case 1 or case 2, a cost of substitution is incurred at 

the rate of CS12 per unit of item 1 substituted by item 2 (Fig. 1) and at the rate of CS21 

per unit of item 2 substituted by item 1 (Fig. 2). 

The derivations of the total annual costs for the three cases are discussed below. 

Case 1. Item 1 is substituted by item 2 (t1 < t2) 

For case 1, the average total cost is derived in the usual manner, i.e., by summing 

the various cost components per cycle and then by multiplying it by the average number 

of cycles per year. For this purpose, the following relationships can easily be established 

from Fig. 1: 

• The inventory level z of item 2 at the instant when the inventory of item 1 depletes 

to zero 

1
2 2 1 2 2

1

Q
z Q D t Q D

D
     

• The length of time p for which item 1 is substituted by item 2 

 
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• Total number of units of item 1 substituted by item 2 per cycle – 1(D1p) 

 
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• Total amount of lost sales of item 1 per cycle (number of units) (1 – 1)D1p 

   1 2 2 1

1 1

2 1 1

( )
1

1 –
D Q D Q

D p
D D






 
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
  

• Length of cycle t1 + p 

 
1 1 2 2 1 1 1 2

1

1 1 2 1 1 2 1 1

Q D Q D Q Q Q
t p

D D D D D D



 

 
   
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• Average number of cycles per unit time (say year) – 1/(length of cycle) 

2 1 1

1 1 2

1

length of cycle

D D

Q Q









  

The cost components per cycle consist of (A) costs related to item 1 (B) costs related 

to item 2 (C) costs of lost sales and (D) substitution costs.  

The total cost associated with item 1 per ordering cycle consists of the fixed order-

ing cost, purchase cost and holding cost, and can be expressed as 

 Total cost associated with item 1 =
2

1 1
1 1 1

1

1

2

iC Q
A C Q

D
   (1) 

The total cost associated with item 2 per ordering cycle consists of the fixed order-

ing cost, purchase cost and holding cost and can be expressed in terms of a given Q1 as 

 

2 2 2

2
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(2)

 

The cost of lost sales is incurred due to the demand for item 1 which is not satis-

fied: a total number of (1 – 1)(D1p) units at a cost of 1 per unit lost, which can be 

expressed as 

 Costs of lost sales = 1 2 2 1
1 1

2 1 1
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( )
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The substitution cost is incurred according to the number of units of item 1 substi-

tuted by item 2 at the rate of CS12 per unit substituted and can be expressed as 

 Substitution cost 1 2 2 1
12 1

2 1 1

( )

( )
S

D Q D Q
C

D D




 
  

 
 (4) 

Thus, the total cost per ordering cycle TC(Q1, Q2), from Eqs. (1)–(4) is given as 
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(5)

 

Finally, for case 1 (when t1 < t2), TC1(Q1, Q2), the average total cost per unit time 

(say a year) is obtained by multiplying the total cost per ordering cycle by the average 

number of cycles per year and is given as 
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(6)

 

Case 2. Item 2 is substituted by item 1 (t2 < t1) 

Following an approach analogous to case 1, for case 2 (when t1 > t2), TC2 (Q1, Q2), 

the average total cost per unit time (say a year) is 
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(7)

 

Case 3. No substitution 

Figure 3 illustrates the inventory levels for the case of no substitution. Under a joint 

replenishment policy, the inventories of both items deplete to zero simultaneously, i.e., 

Q1/D1 = Q2/D2.The average total cost per unit time for an inventory system without 

substitution under joint replenishment, TCWO(Q1, Q2),consists only of setup costs, pur-

chase costs and holding costs and is given as 

 
2 2

2 1 1 2 2
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4. Solution procedure 

For the case of an inventory model without substitution under joint replenishment when 

Q1/D1 = Q2/D2 (case 3, Fig. 3), the optimal order quantities are obtained by standard calculus 

using the method of minimizing a function of two variables and are given as 
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By substituting the values of these optimal order quantities into Eq. (8), we get the 

minimum total cost under the condition of no substitution, which is given as  

  * *

1 2 1 1 2 2 1 2 1 1 2 2( , ) 2 ( )( )WO WO WOTC Q Q C D C D i A A C D C D      (11) 
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As can be seen, the expressions for the average cost per period given by Eqs. (6) 

and (7) for the two cases of substitution, i.e., case 1 and case 2, are rather complex. To 

obtain the optimal ordering quantities using calculus, first we study the behaviour of the 

expressions for the average total cost with respect to the two decision variables Q1 and Q2. 

We check whether the expressions given by Eqs. (6) and (7) possess some sort of convex-

ity under certain conditions. Using the properties related to pseudo-convexity [2], we 

show that the total cost functions given by Eqs. (6) and (7) are pseudo-convex functions 

under certain condition and thus possess a unique minimum. 

4.1. Case 1 (t1 < t2) 

4.1.1. Optimal order quantities and minimum total cost 

Using the properties defined above, we show that the total cost function 1 21( , )TC Q Q

given by Eq. (6) is a pseudo-convex function under certain conditions and thus pos-

sesses a unique minimum. 

Theorem 1. The total cost 1 21( , )TC Q Q is pseudo-convex if 1 1 2 .C C  

Proof. See Appendix A. Since the total cost function 1 21( , )TC Q Q is a pseudo-convex 

function of (Q1, Q2), the unique optimal ordering quantities * *
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For a detailed derivation, see appendix B. 

The optimal ordering quantities are as follows: 
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By substituting the above values of the optimal order quantities into Eq. (6), we 

obtain the optimal cost as 

 



* * 2 2 1 1
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4.1.2. Effect of the substitution rate and critical substitution rate 

The total average annual cost given by Eq. (14) is a function of the substitution rate 1. 

We wish to study the behaviour of this cost with respect to the rate of substitution to 

explore what value of the substitution rate results in the minimum total cost. This value 

of the substitution rate 1 then becomes a policy decision and an indicator of how much 

substitution should be planned and allowed to gain the maximum economic advantage.  

In order to obtain the optimal value of the substitution rate 1 to obtain the minimum 

total cost, we need to observe that the cost expression given by Eq. (14) has been derived 

using the optimal order quantities given by Eqs. (12) and (13), which have been derived 

under the condition 1 1 2 .C C  We call the value of 1 which minimizes the average 

costs under this constraint the critical value of the substitution rate. In order to obtain 

the critical value of 1, one may use standard calculus given that the average cost func-

tion is pseudo-convex, i.e., when 1 1 2 .C C  Equivalently, one can consider the differ-

ence between the optimal total cost with substitution (Eq. (14)) and the optimal total 

cost without substitution (Eq. (11)). Using standard calculus, one can obtain the critical 

value of 1 with respect to this difference between costs under the condition
1 1 2 .C C  

Considering the difference between these two costs is sometimes more appealing, as it 

indicates the economic benefits of the possibility of substitution. 

The difference between costs, 1( )FD  , in terms of 1, the substitution rate of item 1 

is given as  

 * * * *

1 1 2 1 2( ) ( , ) 1( , )F WO WO WOD TC Q Q TC Q Q     (15) 

where TCWO(Q1, Q2) is given by Eq. (8), which does not involve 1, and 1 21( , )TC Q Q is 

given by Eq. (14). 
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Since
1( )FD   as given by Eq. (15) upon substitution of the relevant expressions, or 

for that matter 1 21( , )TC Q Q  as given by Eq. (14), is highly non-linear and complex, its 

concavity is established numerically (cf. next section). The critical value of 1, the sub-

stitution rate of item 1, is obtained using calculus and is given as  

 1 1 2 1 1 1 1 2 2

1

2 1 2 2 12 1 1 1 2 2

2( ) ( ) ( )

2( ) ( ) ( )

e

S

iC A A C i C D C D

iC A A C C i C D C D






    
  
      

  (16) 

4.2. Case 2 (t1 > t2) 

4.2.1. Optimal order quantities and minimum total cost 

Using a similar approach to the one in section 4.1.1, we show that the total cost 

function 1 22( , )TC Q Q  given by Eq. (7) is a pseudo-convex function under certain con-

ditions and thus possesses a unique minimum. 

Theorem 2. The total cost 1 22( , )TC Q Q is pseudo-convex if 2 2 1C C . 

Proof. Analogous to the proof of Theorem 1. 

The optimal ordering quantities are as follows: 

 



   

1/2*

1 2 2 1 2 1 2 21 2 2 2 1 2 1 2 1 2 2

21 2 2 2 1 2 21 2 2 2 2 1 2 2

2 2 2

2 2 2 21 2 2 2 2 2 2 1 2

1/2 1

1 2 2 1 2 1 2 1 2

(( ) (1 )) ( )( )

(2( ) ) 2 ( )(1 )

(1 ) 2 (1 ) ( )

2 ( )( ) ( )

S

S S

S

Q D C C C C C C C D D

C D C C C D C C

D C D D C C

i A A C C iC C C

      

     

     

 


       

     

     

   

  

(17)

 

 * 2 21 2 2 2 2 1 2
2

2 1 2

( (1 ) ( ))

( )

SD C C C
Q

i C C

   



   



 (18) 

By substituting the above values of the optimal order quantities into Eq. (7), we 

obtain 
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



1/2

* * 1 1 2 2
1 2 1 1 2 2 21 2 2 2 2 2

2 1 2

21 2 2 2 1 2 21 2 2 2 2 1 2 2

2 2 2

2 2 2 21 2 2 2 2 2 2 1 2

1/2

1 2 2 1 2

( )
2( , ) ( ) (1 )

( )

(2( ) ) 2 ( )(1 )

(1 ) 2 (1 ) ( )

2 ( )( )

S

S S

S

C D D
TC Q Q C D D C D D

C C

C D C C C D C C

D C D D C C

i A A C C


   



     

     



 
        

     

     

  

  

(19)

 

4.2.2. Effect of the substitution rate and critical substitution rate 

The arguments for this case are analogous to those given in Section 4.1.2.We thus 

obtain the critical value of 2, the substitution rate of item 2, as 

 
   

   

1/2 1/2

2 1 2 2 2 1 1 2 2

2 1/2 1/2

1 1 2 1 21 2 1 1 2 2

2( ) ( ) ( )

2( ) ( ) ( )

e

S

iC A A C i C D C D

iC A A C C i C D C D






    
 
      

  (20) 

4.3. Solution procedure. A simple iterative process 

We notice that the expressions for the optimal ordering quantities (Eqs. (12), (13), 

(17) and (18)) and critical values of the substitution rates (Eqs. (16) and (20)) are highly 

non-linear and implicit. In order to determine their values, the following simple iterative 

procedure is suggested and implemented for the numerical examples. The procedure is 

based on trying out both types of substitution in turn, i.e. first substituting item 1 by 

item 2 and then item 2 by item 1. 

Step 0. Initialize all the parameters of the system. 

Step 1. Obtain the critical value of the substitution rate 1 from Eq. (16). 

Step 2. Choose an appropriate substitution rate between 0 and the critical value 

obtained in Step 1. 

Step 3. Find the optimal values of the order quantities and total cost corresponding 

to case 1, i.e., satisfying the condition 
* *

1 2

1 2

Q Q

D D
  from Eqs. (12)–(14). If these conditions 

are found to be unsatisfied, go to Step 4. 

Step 4. Obtain the critical value of the substitution rate 2 from Eq. (20). 

Step 5. Choose an appropriate substitution rate between 0 and the critical value 

obtained in Step 4. 
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Step 6. Find the optimal values of the order quantities and total cost corresponding 

to case 2, i.e. satisfying the condition
* *

1 2

1 2

Q Q

D D
  from Eqs. (17)–(19). 

Step 7. Exit the algorithm. 

5. Analysis of the model 

In order to get better economic insight into the benefit substitution, we study the 

behaviour of the optimal order quantities, substitution rates, total cost, etc. The analyses 

are presented in the form of theorems. 

Theorem 3. At the critical value of the substitution rate (
1

e ), the optimal ordering 

quantities with substitution are equal to the optimal ordering quantities without substi-

tution. 

Proof. By substituting the value of 
1

e  (Eq. (15)) into *

1Q (Eq. (12)) and *

2Q

(Eq. (13)), we obtain 

* 1 1 1 1 1 1
1 1 12 1

2 2 12 1 2 2 12 1

1

1 1 1 1 1 1
1 2 1 2

2 2 12 1 2 2 12 1

( ) ( )
(1

( ) ( )

( ) ( )
(

( ) ( )

S

S S

S S

iC x C iC x C
Q D C

iC x C C iC x C C

iC x C iC x C
C C i C C

iC x C C iC x C C

 


 

 

 



       
               

         
                      

 

where 

1/2

1 2

1 1 2 2

2( )

( )

A A
x

i C D C D

 
   

 

After simplification, we obtain (see Eq. (9)) 

1/2
2

* * *1 1 2
1 1 1 1

1 1 2 2

2 ( )

( )
WO

D A A
Q D x Q Q

i C D C D

 
    

 
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Similarly, by substituting the value of 
1

e  into *

2Q  (Eq. (13)), after simplification, 

we obtain (see Eq. (10)) 

1/2
2

* *2 1 2
2 2

1 1 2 2

2 ( )

( )
WO

D A A
Q Q

i C D C D

 
  

 
 

These results simply state that at the critical value of the substitution rate, the 

optimal ordering quantities for the items with substitution are equal to the optimal 

ordering quantities for the items without substitution. Thus we may conclude that at 

the critical value of the substitution rate there is no advantage to be gained from sub-

stitution. 

Theorem 4. The feasible region of the substitution rate for substituting item 1 with 

item 2 (case 1) is between 0 and
1

e (i.e.,
1 10 ).e    

Proof. The critical substitution rate for case 1 (from Eq. (16)) 

   

   

1/2 1/2

1 1 2 1 1 1 1 2 2

1 1/2 1/2

2 1 2 2 12 1 1 1 2 2

2( ) ( ) ( )

2( ) ( ) ( )

e

S

iC A A C i C D C D

iC A A C C i C D C D






   


    
 

by rearranging the terms we have 

1/2

1 2
1 1 1

1 1 2 2

1 1/2

1 2
2 2 12 1

1 1 2 2

1/2
2

1 1 2

1 1 2 2

1 1 1

1

1/2
2

2 1 2

1 1 2 2

2 2 12 1

2

2( )
( )

( )

2( )
( )

( )

2 ( )

( )
( )

2 ( )

( )
( )

e

S

S

A A
iC C

i C D C D

A A
iC C C

i C D C D

D A A

i C D C D
iC C

D

D A A

i C D C D
iC C C

D











 
   


 

    

 
 

   


 
 

    
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from Eqs. (9) and (10) 

*

1
1 1 1

1
1 *

2
2 2 12 1

2

( )

( )

WO

e

WO
S

Q
iC C

D

Q
iC C C

D







 



  

 

from Theorem 2 

*

1
1 1 1

1
1 *

2
2 2 12 1

2

( )

( )

e

S

Q
iC C

D

Q
iC C C

D







 



  

 

Since 
* *

1 2

1 2

Q Q

D D
 in the case 1 (when t1 < t2), and the critical value of the substitution 

rate corresponds to 
* *

1 2

1 2

Q Q

D D
 (Theorem 3) thus for case 1 

* *

1 2
1 1 1 2 2 12 1 1 1

1 2

( ) ( )  0   e

S

Q Q
iC C iC C C

D D
   

   
           

   
 

Alternatively since the value of substitution rate lies between 0 and 1, i.e., 10 1   

and 
1

e  is the critical value of the substitution rate 1( ) of item 1 by item 2 (Theorem 3). 

Therefore, 

1 1 1 10e e        

Theorem 5. The optimal ordering quantities with substitution are equal to the optimal 

ordering quantities without substitution at the critical value of the substitution rate (
2

e ). 

Proof. Analogous to the proof of Theorem 3. 

Theorem 6. The feasible region of the substitution rate for substituting item 2 with 

item 1 is between 0 and 
2

e  (i.e., 
2 20 e   ). 

Proof. Analogous to the proof of Theorem 4. 
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6. Numerical example and sensitivity analysis 

In this section, we provide a numerical example in order to illustrate the proposed 

model. The Maple mathematical modelling package was used. The values of the param-

eters given in Table 1 were selected to illustrate the effect of substitution and to provide 

a general explanation. 

Table 1. Parameters used for numerical illustration 

Parameters Item 1 Item 2 

Consumption rates (D1, D2) 100 20 

Setup costs (A1, A2) 250 250 

Purchase costs (C1, C2) 3 5 

Lost sales costs (1, 2) 6 7 

Substitution costs (CS12, CS21) 2 2 

Holding cost rate (i) 2 2 

 

We discuss the results for case 1. The results for case 2 are analogous. From Theorem 1, 

the total cost 1 21( , )TC Q Q is pseudo-convex if 1 1 2 ,C C  i.e., when 1 ≤ C1/C2 = 0.6. In 

order to understand the behaviour of various quantities of interest, the following studies 

and analysis are carried out: 

• Change in the optimal total costs according to the substitution rate 1. 

• Relationship between the total cost (TC1) and cost difference (DF) according to 

the substitution rate 1. 

• Sensitivity analysis for the critical value of the substitution rate and optimal total cost. 

• Sensitivity analysis for the critical value of the substitution rate of item 1 and the 

optimal total cost with a fixed substitution rate. 

6.1. Change in the optimal total costs according to the substitution rate 1 

Following the procedure outlined in section 4.3, we calculate the critical value of 

the substitution rate (Step 1) and the optimal quantities (Step 3). For the given values of 

the parameters given in Table 1 and using the appropriate expressions given in Sec-

tion 4.3, we obtain 

• From Eq. (16), the critical value of the substitution rate 1 = 0.3044. 

• From Eqs. (12) and (13), the optimal ordering quantities with substitution at the 

critical value of the substitution rate are 111.80 and 22.40 for items 1 item 2, respec-

tively. 
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• From Eq. (14), the optimal total cost at the critical value of the substitution rate 

equal to 1294.43 per unit time.  

• From Eqs. (9) and (10), the optimal ordering quantities without substitution are 

also 111.80 and 22.40 for items 1 and 2, respectively. From Eq. (10), the optimal total 

cost is 1294.43 per unit time. This result illustrates Theorem 3. 

We tabulate the following for different values of the substitution rate 1 within the 

range 0–0.3044. 

• The optimal ordering quantities with substitution from Eqs. (12) and (13), and the 

optimal total cost from Eq. (14). 

• The optimal ordering quantities without substitution from Eqs. (9) and (10), and 

the optimal total cost from Eq. (11).  

The results are shown in Table 2. We notice that the improvement in the optimal 

total cost due to substitution decreases with increasing substitution rate (and becomes 

zero at the critical value of the substitution rate equal to 0.3044). 

Table 2. Optimal ordering quantities and optimal total cost 

for different substitution rates 1 (within feasible region) 

1 

Optimal total cost and optimal ordering quantities Improvement  

in optimal 

total cost 

[%] 
with substitution without substitution 

*

1Q  *

2Q  TC1 
*

1WOQ  *

2WOQ  TCWO 

0.10 62.00 43.02 1202.28 111.80 22.40 1294.43 7.12 

0.15 70.00 41.73 1237.32 111.80 22.40 1294.43 4.41 

0.20 80.00 38.55 1265.52 111.80 22.40 1294.43 2.23 

0.25 92.85 32.83 1285.53 111.80 22.40 1294.43 0.69 

6.2. Relationship between the total cost (TC1) and cost difference (DF) 

according to the substitution rate 1 

Further, the relationships between the total cost (TC1) and substitution rate and be-

tween the difference between costs (DF) and substitution rate ranging from 0 to 0.6  

(i.e., up to C1/C2 = 0.6) are illustrated in Figs. 4 and 5, respectively.  

The relationships in Figs. 4 and 5 are strictly concave and convex, respectively, 

which verifies that there exists a unique extreme value of the substitution rate. Figure 5 

also shows that at the critical value of the substitution rate (
1

e ), the total optimal cost 

is independent of whether the possibility of substitution exists. 
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Fig. 4. Total cost (TC1) 

in function of the substitution rate 

Fig. 5. Cost difference (DF)  

in function of the substitution rate 

6.3. Sensitivity analysis for the critical value of the substitution rate  

and optimal total cost 

Next, we carry out the sensitivity analysis of the critical value of the substitution 

rate of item 1, and of the optimal total cost and optimal ordering quantities according to 

given values of the rate of substitution. The percentage improvements in the optimal 

total cost according to the values of various parameters are also presented. The numer-

ical results are given in Table 3. 

Table 3. Sensitivity analysis for the critical value of the substitution rate of item 1 

 and the optimal total cost with a fixed substitution rate, 1 = 0.15  

Parameter 

1

e  

Optimal total cost and optimal ordering quantities 
Improvement 

 in optimal total cost 

[%] Symbol Value 
Substitution at 1 = 0.15 No substitution 

*

1Q  *

2Q  TC1 
*

1WOQ  *

2WOQ  TCWO
 

C1/C2 

1.0 0.802 13.52 56.66 1301.98 91.28 18.25 1695.44 0.232 

0.8 0.545 33.07 52.05 1285.18 100.00 20.00 1500.00 0.143 

0.6 0.304 70.00 41.73 1237.32 111.80 22.36 1294.42 0.044 

0.5 0.191 104.28 30.91 1180.59 119.52 23.90 1186.66 0.005 

0.4 0.083 166.00 8.09 1044.97 129.09 25.81 1074.59 infeasible 
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Parameter 

1

e  

Optimal total cost and optimal ordering quantities 
Improvement 

 in optimal total cost 

[%] Symbol Value 
Substitution at 1 = 0.15 No substitution 

*

1Q  *

2Q  TC1 
*

1WOQ  *

2WOQ  TCWO
 

i 

4 0.385 35.00 34.20 1504.00 79.05 15.81 1664.91 0.097 

3 0.354 46.66 37.61 1384.19 91.28 18.25 1495.94 0.075 

2 0.304 70.00 41.73 1237.32 111.80 22.36 1294.42 0.044 

1 0.195 140.00 41.55 1027.76 158.11 31.62 1032.45 0.005 

0.7 0.127 200.00 30.82 927.89 188.98 37.79 929.15 infeasible 

1 

3 0.441 13.33 56.92 1049.23 111.80 22.36 1294.42 0.189 

4 0.402 32.22 52.92 1122.62 111.80 22.36 1294.42 0.133 

5 0.357 51.11 47.90 1185.74 111.80 22.36 1294.42 0.084 

6 0.304 70.00 41.73 1237.32 111.80 22.36 1294.42 0.044 

9 0.07 126.66 12.19 1281.92 111.80 22.36 1294.42 infeasible 

A1 = A2 

450 0.375 70.00 63.85 1458.52 150.00 30.00 1600.00 0.088 

350 0.346 70.00 53.75 1357.51 132.28 26.45 1379.79 0.069 

250 0.304 70.00 41.73 1237.32 111.80 22.36 1294.42 0.044 

150 0.227 70.00 25.94 1079.95 86.60 17.32 1092.82 0.012 

75 0.09 70.00 6.18 881.80 61.23 12.24 889.89 infeasible 

CS12 

1 0.331 66.66 42.91 1229.15 111.80 22.36 1294.42 0.050 

2 0.304 70.00 41.73 1237.32 111.80 22.36 1294.42 0.044 

3 0.281 73.33 40.50 1245.07 111.80 22.36 1294.42 0.038 

4 0.261 76.66 39.23 1252.37 111.80 22.36 1294.42 0.032 

20 0.122 130.00 9.452 1274.52 111.80 22.36 1294.42 infeasible 

 

• The sensitivity analysis for the critical value of the substitution rate of item 1 is 

carried out with different relative purchasing costs (C1/C2), inventory cost rate (i), cost 

of lost sales per unit (1), fixed ordering costs (A1 = A2)and the unit cost of substitution 

(CS12).  

• The critical value of the substitution rate of item 1 decreases as C1/C2 decreases 

(i.e., the cost of item 1 decreases and/or the cost of item 2 increases), which is also 

evident from Eq. (16). This indicates that as the cost of item 1 decreases and/or the cost 

of item 2 increases, a smaller number of units of item 1 will be substituted with item 2, 

and vice versa. Similar observations are made when the cost of lost sales per unit (1) 

or unit cost of substitution (CS12) increases, and so on.  
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• A sensitivity analysis for the optimal total cost and optimal ordering quantities with 

a fixed rate of substitution, 1 = 0.15, and with various cost parameters as described above. 

The last row corresponding to each parameter matches an infeasible solution, because with 

these values of the parameters, the critical value of the substitution rate is lower than the 

chosen substitution rate. The relationship * *

1 1 2 2/ /Q D Q D  is not satisfied, which is the nec-

essary condition for case 1. Thus the solution is infeasible for the chosen substitution rate.  

6.4. Sensitivity analysis of the decrease in total cost when substitution 

is possible compared to the case without substitution 

The decrease in total cost when substitution is possible compared to the case without 

substitution for various parameters of the system was investigated (Figs. 6–8). 

  

Fig. 6. Decrease in TC1 compared to TCWO as a function  

of the ratio of purchasing costs (C1/C2) and inventory cost rate (i) 

 
 

Fig. 7. Decrease in TC1 compared to TCWO as a function  

of the cost of lost sales (1) and setup cost A1 (equal to A2) 
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Fig. 8. Decrease in TC1compared to TCWO  

as a function of the cost of substitution (CS12) and substitution rate (1) 

While the extent and relative rates may vary, the general nature of the percentage 

improvement in TC1 compared to TCWO follows intuitive reasoning. The findings are 

presented in Table 4. 

Table 4. Total optimal cost when substitution is possible  

compared to total cost without substitution 

Parameter Variation TCWO TC1 Improvement 

C1/C2 

increases 

increases 

increases 

increases 
i 

1 constant decreases 

A1 increases increases 

CS12 
constant decreases 

1 

7. Summary and conclusions 

In this paper we have developed a model of an inventory for two mutually substi-

tutable items by taking into account the cost of substitution and assuming jointly pro-

curement items. Three mutually exclusive and exhaustive cases are formulated. Analys-

ing the procedure for obtaining the minimum total cost via calculus, the concept of the 

critical value of a substitution rate is introduced. Prior knowledge of the critical value 

helps to minimize the total inventory cost. Numerical experimentation indicates that as 
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we approach this critical substitution rate, the percentage improvement in the total op-

timal cost decreases and it is no longer beneficial to substitute items beyond this point. 

Sensitivity analysis for the percentage decrease in the total optimal cost was carried out 

with respect to important parameters of the system. It is believed that the treatment pre-

sented in this paper can be extended to multiple items and to the case of replenishment 

policies other than joint replenishment policies. 
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Appendix A  

Proof of the pseudo-convexity of the total cost function. 

Proof of Theorem 1 

The total cost per unit time in the ordering cycle for case 1 (Fig. 1) is (Eq. (6)) 
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This equation can be re-written as follows: 
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Clearly, the above equation is the ratio of the term *

1 21 ( , )TC Q Q and a function 

which is linear in Q1 and Q2, 1 1 2 2 1 1( ) ( )Q Q D D   . Since the ratio of a positive con-

vex function to a linear function is a pseudo-convex function [1], to prove the pseudo-

convexity of 1 21( , ),TC Q Q  we need to prove that *

1 21 ( , )TC Q Q is a convex function. To 

show this, we prove that all the principal minors of the Hessian matrix of *
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are non-negative. The H-matrix of the function *
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Therefore, if 1 1 2 0 C C   or 1 1 2 ,C C then the H-matrix is positive definite. 

This completes the proof. 
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Appendix B 

Upon partially differentiating the equation for the total cost per unit time, given by 

Eq. (6), with respect to Q1 and Q2, we obtain 
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By solving the simultaneous equation  
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