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REDUCING THE NUMBER OF PATHS 

IN A MINIMIZED PROJECT-NETWORK WITH GIVEN BOUNDS 

ON THE DURATIONS OF ACTIVITIES 

This paper deals in a preliminary way with the problem of selecting the smallest possible number 

of dominant paths in a minimized project-network with given bounds on the permissible values of the 

durations of activities. For this purpose, a classification technique is proposed. This technique is based 

on a heuristic possibilistic clustering of interval-valued data. The basic concepts of heuristic possibilis-

tic clustering are defined and methods for preprocessing interval-valued data are described. An illus-

trative example is considered in detail and some conclusions are formulated. 
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1. Introduction 

Project scheduling and project management are very relevant in a diverse range of 

problems. Applications can be found in such different areas as industry, engineering, 

research, defense, etc. Moreover, problems involving project scheduling and project 

management are very interesting for researchers, because they are difficult to solve. 

It is often hard to obtain a priori exact values of the durations of activities in project 

management. Therefore, assuming that the duration of an activity may remain uncertain 

until it is completed is more realistic. Hence, it is appropriate to give lower and upper 

bounds on the possible durations of activities at the step of project planning. In this case, 

a critical path in the given project-network cannot be found a priori. However, arcs and 

vertices that cannot belong to a critical path for any possible realization of the project 

can be deleted from the project-network. Thus, the subset of dominant paths can be 
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constructed and the initial project-network minimized. It should be noted, that the problem 

of uncertainty in project scheduling is considered, for example, in [1] and [7], where numer-

ical data regarding upper and lower bounds on the durations of activities are considered. 

Let us consider in brief some basic concepts and notation which were defined in [9] and 

[10]. Let 1( )( ) ( )( , )tG X E   be a graph without cycles. So, 1 1( ) ( )

1 1{ | 1, , }t tX x t m    

is the set of vertices and ( )E   is the set of arcs representing precedence constraints on the 

set 1( ) .tX 
 Let 1{ , , }qX x x    be the set of all paths from the vertex 1( )( )1 tx X    to the 

vertex 1 1( ) ( )m tx X   in the graph 1( )( ) ( )( , ).tG X E  The graph 1( )( ) ( )( , )tG X E   is 

a project-network with start-vertex ( )1x   and end-vertex 1( ) .mx   It is assumed that the du-

rations of dummy activities ( )1x   and 1( )mx   are equal to zero, and for any other activity 
1( ) ,tx 

 
1 11 ,t m   the closed interval 1 1(min) (max)[ , ]t tx x  of possible durations is given, 

where the condition 1 1(min) (max)t tx x  is met. 

Any longest path ,kx X   {1, , }k q  from the start-vertex ( )1x   to the end-ver-

tex 1( )mx   is called a critical path in the network ( ).G   If the condition 1 1(min) (max)t tx x  is 

met for each activity 1 1( ) ( ) ,t tx X   then the graph ( )G   is a deterministic project-net-

work whose total duration is defined by the length of a critical path. If the condition 
1 1(min) (max)t tx x  is not met, then the length of a longest path in the realization of the pro-

ject is unknown a priori. In other words, a deterministic project-network is a special 

case of the model considered in this paper in which the upper and lower bounds are 

equal for each random time. 

The dominance relations  and  on the set of paths in the network ( )G   were de-

fined in [9, 10] as follows: If the length of the path jx
 is greater than the length of the 

path 
ix  for all the possible durations of the activities, then the dominance relation 

i jx x 
 is met for paths 

ix  and .jx
 If the length of the path jx

 cannot be less than the 

length of the path 
ix  for all the possible durations of the activities, then the dominance 

relation i jx x 
 is met. If the dominance relation i jx x 

 holds, then the path jx
 dom-

inates the path .ix  If for any path ( ) ,kx X   {1, , },k q  there exists a path ,ix X  

{1, , }i n such that the dominance relation 
k ix x  is met, then any minimal set of 

paths 1{ , , },nX x x
( )X X   is called a dominant set for network ( ).G   Hence, 

( )card( ) ,X q  card( ) ,X n  and .n q  

The problem of constructing a minimal subgraph G  of the given graph 
( ) ,G 

 which 

is a network with the same start-vertex ( )1x   and end-vertex 1( ) ,mx 
 and for which 

( )X X  is considered by Sotskov and Shilak [9, 10], who proposed an effective ap-

proach to the minimization of a project-network with given bounds on the durations of 
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activities. In other words, the set of all paths X of the subgraph 1( , )tG X E  is a domi-

nant set for the network 1( )( ) ( )( , ).tG X E   

On the other hand, the number n  of paths in the minimized project-network G  can 

also be large and there still exists the problem of selecting one or several appropriate 

paths from the subset X  of dominant paths. A heuristic technique to solve such prob-

lems is proposed in this paper. The proposed technique of deriving such a subset of 

paths is based on a heuristic approach to the possibilistic clustering of interval-valued 

data. The contents of this paper are as follows: in the second section a classification 

technique for choosing paths in the subset of dominant paths is proposed, in the third 

section an illustrative example of applying the proposed technique to an artificial pro-

ject-network is given, in the fourth section final remarks are stated. 

2. Discriminating paths in the minimized project-network 

The first subsection considers the basic concepts of heuristic possibilistic clustering. 

Indexes for evaluating the results of clustering are described in the second subsection. 

Methods for the preprocessing of interval-valued data are described in the third subsec-

tion and a classification technique for selecting the minimal number of paths in the min-

imized project-network is presented in the fourth subsection of this section. 

2.1. Basic concepts of a heuristic approach to possibilistic clustering 

Let us recall the basic concepts of a heuristic method of possibilistic clustering 

which was proposed in [12]. The essence of this heuristic approach to possibilistic clus-

tering is that the clustering structure of a set of objects is assumed to be based directly 

on the formal definition of a fuzzy cluster and possibilistic memberships are also di-

rectly determined from the values of the pairwise similarity of objects. 

Let 
1{ , ..., }nX x x  be the initial set of objects. Let T  be a fuzzy tolerance on X  

and  be the value defining the -level of T, (0,1].   The columns or rows of the 

fuzzy tolerance matrix can be interpreted as fuzzy sets 1{ , ..., }.nA A  Let 1{ , ..., }nA A  be 

fuzzy sets on X, which are generated by a fuzzy tolerance T. The -level fuzzy set 

( ) {( , ( )) | ( ) },l l

l

i i iA A
A x x x      [1, ]l n  is a fuzzy  -cluster or, simply, a fuzzy 

cluster. Thus ( ) ,l lA A   (0,1] , 1{ , , }l nA A A  and 
il

  is the degree of mem-

bership of the element 
ix X  in some fuzzy cluster ( ) ,

lA   (0,1],   [1, ]l n . The 

value of  is the tolerance threshold of the elements of fuzzy clusters. 
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The degree of membership of the element 
ix X  in some fuzzy cluster ( ) ,

lA   

(0,1],   [1, ]l n  can be defined as 

 
( ),

0, otherwise

l

l

i iA
li

x x A


 
 


 (1) 

where the -level { | ( ) },l

l

i iA
A x X x      (0,1]   of the fuzzy set lA  is the sup-

port of the fuzzy cluster ( ) .
lA   Hence, the condition ( )Supp( )l lA A   is met for each 

fuzzy cluster ( ) ,
lA   (0,1],   [1, ].l n  The degree of membership can be interpreted 

as the degree of typicality of an element within a fuzzy cluster. 

Let T be a fuzzy tolerance on X, where X is a set of objects, and 
1

( ) ( ){ , ..., }nA A   is 

a family of fuzzy clusters for some (0,1].   The point ,l l

e A   for which 

 argmax ,
i

l

e li
x

  l

ix A   (2) 

is called a typical point of the fuzzy cluster ( ) ,
lA   (0,1],   [1, ].l n  A fuzzy cluster 

( )

lA   can have multiple typical points. That is why the symbol e  is used as an index of 

a typical point. 

Let 
( ) ( )( ) { | 1, , 2 , (0,1]}l

c zR X A l c c n

       be a family of fuzzy clusters for 

some value of the tolerance threshold , (0,1]  which are generated by some fuzzy 

tolerance T on the initial set of elements 
1{ , ..., }.nX x x  If the condition 

 
1

0,
c

li

l




 ix X    (3) 

is met for all fuzzy clusters ( ) ( ) ( ),l

c zA R X

   1, ,l c  ,c n  then such a family is an al-

lotment of the elements of the set 1{ , ..., }nX x x to the fuzzy clusters 

( ){ , 1, , 2 }lA l c c n     for some value of the tolerance threshold . It should be noted 

that several allotments ( ) ( )с zR X
 can exist for a given tolerance threshold . That is why 

the symbol z is used as an index of an allotment. 

The allotment ( )( ) { | 1, , (0,1]}l

IR X A l n

     of the set of objects to n fuzzy 

clusters for some tolerance threshold (0,1]  is an initial allotment of the set 
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1{ , ..., }.nX x x  In other words, if the initial data are represented by a matrix generated 

by some fuzzy tolerance T, then the rows or columns of this matrix are the fuzzy sets 

,lA X  1,l n  and the -level fuzzy sets ( ) ,
lA   1, ,l c  (0,1]  are fuzzy clusters. 

These fuzzy clusters constitute an initial allotment corresponding to the tolerance 

threshold   and can be considered to be the components of a clustering. 

If some allotment 
( ) ( )( ) { | 1, , , (0,1]}l

с zR X A l c c n

      corresponds to the 

formulation of a concrete problem, then this allotment is an adequate allotment. In par-

ticular, if the condition 

 
1

c
l

l

A X



   (4) 

and the condition 

 card( ) 0,l mA A   ( ) ( ), ,l mA A  ,l m (0,1]   (5) 

are met for all fuzzy clusters ( ) ,
lA  1,l c  of some allotment 

( ) ( )( ) { | 1, ,l

с zR X A l c

 

}c n  for a value (0,1],  then such an allotment is an allotment to fully separate 

fuzzy clusters. 

Fuzzy clusters in the sense of definition (1) can intersect. If the intersection of any 

pair of different fuzzy clusters is an empty set, then conditions (4) and (5) are met and 

fuzzy clusters are called fully separate fuzzy clusters. Otherwise, fuzzy clusters are 

called particularly separate fuzzy clusters and {0, , }w n  is the maximum number of 

elements in the intersection of different fuzzy clusters. When 0,w  fuzzy clusters are 

fully separate fuzzy clusters. Thus, conditions (4) and (5) can be generalized to the case 

of particularly separate fuzzy clusters. Hence, condition 

1

card( ) card( ),
c

l

l

A X


 ( ) ( ) ( ),l

с zA R X

  (0,1], ( )card( ( ))c zR X c   (6) 

and condition 

 card( ) ,l mA A w   ( ) ( ),l mA A  , ,l m (0,1]  (7) 

are generalizations of conditions (4) and (5). Obviously, if 0w   in conditions (6) and (7), 

then conditions (4) and (5) are met. The adequate allotment ( ) ( )с zR X
 for some value of 

the tolerance threshold (0, 1]  is a family of fuzzy clusters which are elements of 
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the initial allotment ( )IR X  for the given value of   and the family of fuzzy clusters 

should satisfy conditions (6) and (7). Hence, the construction of adequate allotments 

( ) ( )( ) { | 1, , }l

с zR X A l c c n

    for any  is a trivial combinatorical problem. 

The allotment 
( )( ) { | 1, }l

PR X A l c

   of a set of objects to the minimal number c, 

2 c n   of fully separate fuzzy clusters for some tolerance threshold (0,1]  is 

called the principal allotment of the set 
1{ , ..., }.nX x x  

Several adequate allotments can exist. Thus, the problem consists of selecting the 

unique adequate allotment ( )cR X  from the set B of adequate allotments, ( ){ ( )},c zB R X  

which is the class of possible solutions of the given classification problem. The selection 

of the unique adequate allotment ( )cR X  from the set ( ){ ( )}c zB R X  of adequate allot-

ments must be made on the basis of evaluating the allotments. In particular, the criterion 

 
( )

1 1

1
( ( ), )

lnc

c z li

l il

F R X c
n

   
 

     (8) 

where c is the number of fuzzy clusters in the allotment ( ) ( )с zR X
 and card( ),l

ln A  

( ) ( ) ( )l

c zA R X

   is the number of elements in the support of the fuzzy cluster ( ) ,
lA   can 

be used to evaluate allotments. The maximum value of function (8) corresponds to the 

best allotment of objects to c fuzzy clusters. Hence, such a classification problem can 

be characterized formally as determining the solution ( )cR X  satisfying 

 
( )

( )
( )

( ) arg max ( ( ), )
c z

c c z
R X B

R X F R X


 



   (9) 

The problem of cluster analysis can be defined in general as the problem of deriving 

the unique allotment ( )cR X  resulting from the classification process and defining 

a fixed or unknown number c of fuzzy clusters can be considered as the aim of classifi-

cation. 

Direct heuristic algorithms of possibilistic clustering can be divided into two 

types: relational versus prototype-based. The matrix of initial data for direct heuristic 

relational algorithms of possibilistic clustering is a fuzzy tolerance relation matrix and 

a matrix of attributes is the input matrix for prototype-based algorithms. In particular, 

the group of relational direct heuristic algorithms of possibilistic clustering includes: 

 D-AFC(c) algorithm constructing an allotment among a given number c of par-

tially separate fuzzy clusters, 
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 D-PAFC algorithm constructing the principal allotment among an unknown num-

ber of at least c fully separate fuzzy clusters, 

 D-AFC-PS(c) algorithm – a partially supervised construction of an allotment among 

a given number c of partially separate fuzzy clusters. 

On the other hand, the family of direct prototype-based heuristic algorithms of pos-

sibilistic clustering includes: 

 D-AFC-TC algorithm constructing an allotment among an unknown number c of 

fully separate fuzzy clusters, 

 D-PAFC-TC algorithm constructing the principal allotment among an unknown 

number of at least c fully separate fuzzy clusters, 

 D-AFC-TC() algorithm constructing an allotment among an unknown number c 

of fully separate fuzzy clusters with respect to the minimal value  of the tolerance 

threshold. 

It should be noted that these direct prototype-based heuristic possibilistic clustering 

algorithms are based on a transitive closure of an initial fuzzy tolerance relation. 

2.2. Evaluating fuzzy clusters 

The results of classification should be assessed. Some formal criteria can be useful 

for this aim. For example, the most appropriate distance between fuzzy sets for data 

preprocessing can be selected on the basis of evaluating the results of classification. The 

problem of evaluating fuzzy clusters was considered in [12]. 

Qualitative inspection of the results of fuzzy clustering can be done, e.g., using a lin-

ear or quadratic index of fuzziness . These two indexes are considered by Kaufmann [5]. 

A modification of the linear index of fuzziness is defined in [12] as 

 ( )( ) ( )

2
( ) ( , )

ll l

L H

l

I A d A A
n

   (10) 

where card( ),l

ln A ( ) ( )l

cA R X

  is the number of objects in the fuzzy cluster ( )

lA   

and ( )( )( , )
ll

Hd A A   is the Hamming distance, 

 
( )

( )( )( , ) ( )l

l
i

ll

H li iA
x A

d A A x




  


   (11) 

between the fuzzy cluster ( )

lA   and the crisp set ( )

l
A   nearest to the fuzzy cluster ( ) .

lA   

The membership function of the crisp set ( )

l
A   can be defined as 
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( )

( )

( )

0, ( ) 0.5
( ) ,

1, ( ) 0.5

l

l

l

iA

iA
iA

x
x

x















 


l

ix A   (12) 

where (0,1].  

The modified quadratic index of fuzziness is defined as [12] 

 ( )( ) ( )

2
( ) ( , )

ll l

Q E

l

I A d A A
n

   (13) 

where card( ),l

ln A ( ) ( )l

cA R X

  and ( )( )( , )
ll

Ed A A   is the Euclidean distance, 

  
( )

2

( )( )( , ) ( )l

l
i

ll

E li iA
x A

d A A x




  


   (14) 

between the fuzzy cluster ( )

lA   and the crisp set ( )

l
A   which is defined by formula (12). 

Indexes (10) and (13) measure the degree of fuzziness of fuzzy clusters which are 

elements of the allotment ( ).cR X  Obviously, ( ) ( )( ) ( ) 0l l

L QI A I A    for a crisp set 

( ) ( ).l

cA R X

  Otherwise, if 0.5,li   ,l

ix A   then the fuzzy cluster ( ) ( )l

cA R X

  is 

a maximally fuzzy set and ( ) ( )( ) ( ) 1.l l

L QI A I A    

The density of a fuzzy cluster was defined as follows [12]: 

 ( )

1
( )

l
i

l

li

x Al

D A
n



 


   (15) 

where card( ),l

ln A ( ) ( )l

cA R X

  and the membership degree 
li  is defined by for-

mula (1). It is obvious that the condition 

 ( )0 ( ) 1lD A   (16) 

is met for each fuzzy cluster ( )

lA   in ( ).cR X  Moreover, ( )( ) 1lD A   for any crisp set 

( ) ( )l

cA R X

  and any tolerance threshold , (0,1].  The density of a fuzzy cluster 

measures the average membership degree of the elements of a fuzzy cluster. 
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2.3. Notes on interval-valued data preprocessing 

Interval uncertainty in the initial data is a basic type of uncertainty in clustering 

problems. This fact was shown by Kreinovich and Kosheleva in [6]. Hence, initially 

interval-valued data preprocessing methods must be considered. 

Let 
1{ , , }nX x x  be a set of n  objects in an m1-dimensional feature space with 

coordinate axis labels 1 11( , , , , }.t mx x x  Each object 
ix  is represented as a vector of 

intervals 1 11ˆ ˆ ˆ( , , , , ),t m

i i i ix x x x  where 1 1 1(min) (max)ˆ ˆ ˆ[ , ].t t t

i i ix x x  Hence, the table of in-

terval-valued data 1

1

ˆ ˆ[ ]t

n m iX x   is made up of n rows representing n objects to be clus-

tered, and 
1m  columns representing 

1m  interval variables. In other words, each cell of 

this table contains an interval 1 1 1(min) (max)ˆ ˆ ˆ[ , ],t t t

i i ix x x {1, , },i n  
1 1{1, , }.t m  

The initial data matrix can be represented as a set of two matrices 2 1 2

1

( )ˆ ˆ[ ]t t t

n m iX x  , 

1, , ,i n  
2 {min, max}t   and the “plausible” number c of fuzzy clusters can be dif-

ferent for each matrix 2 1 2

1

( )ˆ ˆ[ ],t t t

n m iX x   
2 {min, max}.t   The clustering structure of 

a data set depends on the type of the initial data. Three types of such structures are de-

fined in [12]. Firstly, if the number of clusters c is some constant for each matrix 
2 1 2

1

( )ˆ ˆ[ ],t t t

n m iX x   
2 {min, max}t   and the coordinates of the prototypes 1{ , , }с   of 

the clusters 1{ , , }сA A  are constant, then the clustering structure is called stable. Sec-

ondly, if the actual number of clusters c is some constant for each matrix 2 1 2

1

( )ˆ ˆ[ ],t t t

n m iX x   

2 {min, max}t   and the coordinates of the prototypes of the clusters are not constant, 

then the clustering structure is called quasi-stable. Thirdly, if the number of clusters c is 

different for each matrix 2 1 2

1

( )ˆ ˆ[ ],t t t

n m iX x   
2 {min, max},t   then the corresponding clus-

tering structure is called unstable. The purpose of clustering is to classify the set 

1{ , ..., }nX x x  into c  fuzzy clusters and the number of clusters c can be unknown be-

cause it depends on the situation. In other words, the clustering structure of the set of 

objects 1{ , ..., }nX x x  must be stable in each situation. A simple and effective tech-

nique for constructing a stationary clustering structure for an interval-valued data set is 

described in [12]. 

Relational heuristic algorithms for possibilistic clustering can be applied directly to 

the data given as a matrix with some fuzzy tolerance [ ( , )],T i jT x x , 1, , .i j n  

This means that it can be used with objects by attributes data by choosing a suitable 

metric to measure similarity. However, the initial data should be normalized. A method 

of normalizing interval-valued data was defined in [12] as follows: 
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1 2 1 2

21 2

1 2 1 2

22

( ) ( )

,( )

( ) ( )

,,

ˆ ˆmin

ˆ ˆmax min

t t t t

i i
i tt t

i t t t t

i i
i ti t

x x
x

x x





, (17) 

where 
1 11, , ,t m  

2 {min, max}.t   Hence, each object 
ix , 1, ,i n  can be consid-

ered as an interval-valued fuzzy set and 1 1 1(min) (max)
( ) [ ( ), ( )],

i i i

t t t

x x xx x x    1, , ,i n  

1, ,t m  is its membership function, where 1 (min)
( ) [0,1],

i

t

x x   1 (max)
( ) [0,1].

i

t

x x   

Various distance and similarity measures for interval-valued fuzzy sets have been 

proposed in the literature. Firstly, some methods for measuring distances between inter-

val-valued fuzzy sets were proposed by Burillo and Bustince in [2]. For example, the 

normalized Euclidean distance was defined as follows: 

    
1

1 1 1 1

1

2 2
(min) (min) (max) (max)

11

1
( , ) ( ) ( ) ( ) ( )

2 i j i j

m
t t t t

I i j x x x x

t

d x x x x x x
m

   


     (18) 

for all , 1, , .i j n  

Secondly, the normalized Euclidean distance between interval-valued fuzzy sets 

based on the Hausdorff metric was defined by Grzegorzewski [3]: 

    
1

1 1 1 1

1

2 2
(min) (min) (max) (max)

11

( , )

1
max ( ) ( ) , ( ) ( )

i j i j

I i j

m
t t t t

x x x x

t

e x x

x x x x
m

   


  
  (19) 

for all , 1, , .i j n  

Thirdly, a similarity measure between interval-valued fuzzy sets was defined by Ju 

and Yuan in [4] as follows: 

 

1 11 11

1

(min) (max)(min) (max)

11

( ) ( )( ) ( )1
( , ) 1

2 2

j ji i

t tt tm
x xx x

I i j

t

x xx x
s x x

m







  




   (20) 

for all , 1, ,i j n  and 1 .    

Moreover, the coefficients of dissimilarity between objects can be constructed on 

the basis of generalizing distances between fuzzy sets [12]. In particular, a generaliza-

tion of the normalized Euclidean distance for interval-valued fuzzy sets can be described 

by the expression 
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  
1

1 2 1 2

1 2

2
( ) ( )

2
1 {min,1

max}

1 1
( , ) ( ) ( )

2 i j

m
t t t t

I i j x x

t t

x x x x
m

  
 

 
  
 
 
 

   (21) 

for all , 1, , .i j n  

The matrix of fuzzy intolerance [ ( , )],I i jI x x  , 1, ,i j n  is the result of ap-

plying formulae (18), (19), (21) to the family of interval-valued fuzzy sets 
1{ , ..., }.nx x  

The matrix of fuzzy tolerance [ ( , )],T i jT x x  , 1, ,i j n  can be obtained after ap-

plying the complementary operation [5] 

 ( , ) 1 ( , ),T i j I i jx x x x   , 1, ,i j n   (22) 

to the matrix of fuzzy intolerance [ ( , )].I i jI x x  

2.4. A heuristic technique for selecting paths in a minimized project-network 

Let graph 1( , )tG X E  be a minimal subgraph of the original graph ( )G 

1( ) ( )( , ).tX E   We assume that the subgraph 1( , )tG X E  is constructed according to 

the approach proposed in [9] and [10]. Let 
1{ , , }nX x x  denote the set of all paths 

in the graph 1( , )tG X E  from vertex 11 tx X  to vertex 1 1m tx X  and card( )X n  be 

the cardinality of the set X. In other words, the value n is the number of all paths from 

start-vertex 1x  to end-vertex 1mx  in the graph 1( , ).tG X E  Hence, all the paths can be 

numbered, ,ix X {1, , }.i n  

Each path can be considered as an object ,ix {1, , },i n and the vertices 1ˆ ,tx  

1 1{1, , }t m  are attributes of the object. This is why the problem of constructing 

a minimal subset of paths can be considered as a task of classifying an interval-valued 

data set. Hence, a technique for selecting the most appropriate paths in a minimized 

project-network can be summarized as follows: 

1. The initial interval-valued data are contained in the matrix of attributes 
1 2

1

( )ˆ ˆ[ ],t t

n m iX x   1, , ,i n  1 11, , ,t m  2 {min, max}t   and a technique for con-

structing a stationary clustering structure ( )cR X  describing interval-valued data should 

be applied to the data set. 
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2. Calculate the value of the density ( )( )lD A   of each fuzzy cluster in the allotment 

constructed, ( ) ( )l

cA R X

 , and construct a subset ( ){ } ( )l

cA R X

  of fuzzy clusters 

with the maximal values of the density. 

3. Typical points l

e  of the fuzzy clusters which are elements of the subset con-

structed ( ){ } ( )l

cA R X

  should be selected as elements of the minimal subset of paths. 

The modified linear index of fuzziness (10) and the modified quadratic index of 

fuzziness (13) can also be used instead of the density of a fuzzy cluster (15) in the tech-

nique presented and a subset of fuzzy clusters with the minimal value of index (10) or 

(13) must be constructed in step 2. 

Note at this point that an allotment among fuzzy clusters, where one object is 

a unique element of some fuzzy cluster and its typical point, can be obtained as a result 

of applying the proposed technique to the data. On the other hand, an allotment among 

fuzzy clusters, where each object is a unique element of the corresponding fuzzy cluster 

and its typical point, can also be obtained. This is why either a unique path or all the 

paths from a minimized project-network will be extreme cases of solutions to the clas-

sification task. The proposed technique should be illustrated by a simple example. 

3. An illustrative example 

Let us consider an application of the proposed technique based on the network 
1( )( ) ( )( , )tG X E   describing the project considered in [9]. The corresponding initial 

network (Fig. 1) is presented in a form wherein activities are represented by vertices of 

the graph. 

 

Fig. 1. The graph describing the initial project-network 
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Thus the set ( ) ( )1 ( )21{ , , }X x x    is the set of vertices of the initial graph ( )G   

and card( ) 12X   . The numerical values of the durations of the activities in the initial 

network 1( )( ) ( )( , )tG X E   describing the project are given in Table 1. 

Table 1. Durations of the activities in the initial network of the project 

Duration of activity  
 Vertex number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Minimal 0 11 2 1 12 16 15 16 15 3 1 14 2 18 8 8 9 22 14 8 0 

Maximal 0 14 4 3 14 19 19 22 22 4 2 18 8 24 14 10 13 25 16 12 0 

 

An approach to minimizing the initial project-network [9] was applied to the origi-

nal graph 1( )( ) ( )( , ).tG X E   As a result, the graph 1( , )tG X E  describing the mini-

mized project-network was obtained. The result of applying this approach to minimizing 

the project-network 1( )( ) ( )( , )tG X E   is presented in Fig. 2. 

 

Fig. 2. The graph describing the minimized project-network 

The set 1 4{ , , }X x x  of these paths is the dominant network for the initial graph 

1( )( ) ( )( , ).tG X E   In other words, all the paths in the digraph constructed, 

1( ,, ),lG X E  are critical for some admissible set of durations of the activities for the 

original project-network. 

The project-network presented in Fig. 2 can be described by a matrix of attributes, 

where paths correspond to objects and vertices to attributes of the objects classified, 

where the values of attributes are represented by intervals. The matrix of interval-valued 

data for classification is given in Table 2, where the durations of activities correspond-

ing to the start-vertex 1x  and the end-vertex 21x  are omitted. 
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Table 2. Characteristics of paths in the minimized network of the project 

Path number, i 
Vertex number, 

1t  

2 4 7 11 12 14 15 17 19 20 

1 [11, 14] [0, 0] [15, 19] [0, 0] [0, 0] [0, 0] [0, 0] [9, 13] [0, 0] [0, 0] 

2 [0, 0] [1, 3] [0, 0] [1, 2] [0, 0] [18, 24] [0, 0] [9, 13] [0, 0] [0, 0] 

3 [0, 0] [1, 3] [0, 0] [0, 0] [14, 18] [0, 0] [8, 14] [9, 13] [0, 0] [0, 0] 

4 [0, 0] [1, 3] [0, 0] [0, 0] [14, 18] [0, 0] [0, 0] [0, 0] [14, 16] [8, 12] 

The proposed technique for selecting the most appropriate paths in the minimized 

project-network G  was applied to these interval-valued data. Let us consider the results 

of classification obtained after applying the first step of the technique. 
  

Fig. 3. Membership functions for two fuzzy clusters obtained after applying 

the first step of the proposed technique: a) using the distance (18), b) using the distance (19), 

c) using the similarity measure (20), d) using the dissimilarity measure (21) 

The clustering structure of the interval-valued data set presented is the quasi- 

stable clustering structure. The initial interval-valued data were normalized according 

  

  

b) 

c) d) 

a) 



Reducing the number of paths in a minimized project-network 85 

to formula (17), and the allotment ( )cR X  among two fully separated fuzzy clusters was 

constructed using formulae (18)–(21). We assume that 2   in formula (20). The first 

class is formed by one object and the second class is formed by three objects in all the 

experiments. The membership functions of the two fuzzy clusters obtained after apply-

ing the first step of the proposed procedure using formulae (18)–(21) are presented in 

Fig. 3. The membership values for the first fuzzy cluster are represented by ○ and the 

membership values for the second fuzzy cluster are represented by black dots. 

The first path 
1x X  is the unique typical point 1  of the first fuzzy cluster and the 

third path 
3x X  is the unique typical point 2  of the second fuzzy cluster from the 

allotment obtained. It should be noted that both fuzzy clusters are subnormal fuzzy sets 

in the case of using dissimilarity measure (21), because this dissimilarity measure does 

not satisfy the antireflexivity condition. Calculating the values of the indexes (10), (13), 

and (15), as well as constructing the subsets of fuzzy clusters with extreme values of 

these indexes, are the subject of the second step of the proposed technique. The main 

characteristic features of the classification obtained by applying the second step of the 

proposed technique are summarized in Table 3. 

Table 3. Characteristic features of the results obtained using the proposed technique 

Characteristics  

of fuzzy clusters 

in the allotment  

obtained 

Values of the characteristic features obtained using 

distance (19) distance (20) similarity measure (21)  dissimilarity measure (22) 

Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

Index (10) 0.0000 0.6104 0.0000 0.4900 0.0000 0.6252 0.1923 0.7103 

Index (13) 0.0000 0.7476 0.0000 0.6001 0.0000 0.7658 0.1923 0.7449 

Index (15) 1.0000 0.6385 1.0000 0.5783 1.0000 0.6459 0.9038 0.5575 

 

Fig. 4. The unique selected path in the minimized project-network 

The values of the density of a fuzzy cluster, based on equation (15), are maximal 

and the values of the modified indexes of fuzziness, based on Eequations (10) and (13), 

are minimal for the first fuzzy cluster in all the experiments. Hence, the first fuzzy clus-

ter should be selected as the unique element of the subset ( ){ } ( )l

cA R X

  of the allot-

ment obtained, ( ),cR X  among two fuzzy clusters and its typical point 1  is the unique 



D. VIATTCHENIN 86 

element of the minimal subset of paths. Choosing the typical point is the subject of the 

third step of the proposed heuristic technique. Thus, the path selected, 
1x , is shown in 

Fig. 4. 

Moreover, the first path can be considered as an outlier [11] in the clustering struc-

ture of the set 
1 4{ , , }X x x  of paths in the minimized project-network, because this 

path is the unique element of the first fuzzy cluster. 

Hence, the results obtained for the numerical example seem to be satisfactory for 

distances (18), (19), similarity measure (20) and dissimilarity measure (21). It should 

be noted that the unique selected path includes five vertices, while the other paths in-

clude six vertices. 

4. Conclusions 

A technique has been described for categorizing paths in a minimized project-net-

work with given bounds on the durations of activities, where lower and upper bounds 

on the possible durations of activities are given at the stage of project planning. The 

proposed technique can be summarized as a three-step procedure where a minimized 

project-network is represented as a matrix of interval-valued data and the minimal sub-

set of paths is derived from the subset of dominant paths using heuristic possibilistic 

clustering. Hence, either a unique path or all the paths from a minimized project-net-

work will be extreme cases of solutions to the classification task. 

Summarizing, we should note that the derived minimal subset of dominant paths 

contains all the necessary information about the critical paths in the initial network ( )G   

and may be used at the stage of project control. 

Some other ways of deriving the minimal number of paths in a minimized project-

network with given bounds on the durations of activities can be investigated. Firstly, 

a methodology for outlier detection in an interval-valued data set [11] can be applied to 

the set of paths in the minimized project-network and this set of outliers can be inter-

preted as a solution of the problem. Secondly, the set of all paths 
1{ , , }nX x x in the 

graph 1( , )tG X E  from vertex 11 tx X  to vertex 1 1m tx X  can be considered as a set 

of alternatives. If a weak fuzzy preference relation is given on X, then the fuzzy set of 

non-dominated alternatives can be constructed and an alternative can be selected ac-

cording to the method proposed by Orlovsky [8]. Hence, a method of constructing an 

appropriate weak fuzzy preference relation on the set of paths in a minimized project-

network with given bounds on the durations of activities should be developed. 

These perspectives for future investigations are of great interest from both a theo-

retical and practical point of view. 
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