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A NEWLY DEVELOPED METHOD FOR COMPUTING  

RELIABILITY MEASURES IN A WATER SUPPLY NETWORK 

A reliability model of a water supply network has beens examined. Its main features are:  

a topology that can be decomposed by the so-called state factorization into a (relatively)small number 

of derivative networks, each having a series-parallel structure (1), binary-state components (either op-

erative or failed) with given flow capacities (2), a multi-state character of the whole network and its 

sub-networks – a network state is defined as the maximal flow between a source (sources) and a sink 

(sinks) (3), all capacities (component, network, and sub-network) have integer values (4). As the net-

work operates, its state changes due to component failures, repairs, and replacements. A newly devel-

oped method of computing the inter-state transition intensities has been presented. It is based on the so- 

-called state factorization and series-parallel aggregation. The analysis of these intensities shows that 

the failure-repair process of the considered system is an asymptotically homogenous Markov process. 

It is also demonstrated how certain reliability parameters useful for the network maintenance planning 

can be determined on the basis of the asymptotic intensities. For better understanding of the presented 

method, an illustrative example is given. 

Keywords: water supply network, reliability, series-parallel aggregation, factorization 

1. Introduction 

Reliability of water supply networks (WSN) is an important topic studied by many 

researchers in various aspects. Two main approaches can be distinguished in this field: 

analytical (derivation of appropriate formulas based on analysis of the network struc-

ture) and statistical (computation of reliability indices by means of statistical methods 

applied to operational or simulation data). The approach pursued in this paper belongs 

to the former class, and can be referred to as topology and flow oriented. However, the 

literature in this area is rather scarce – a short survey is given below. A comprehensive 
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synopsis of analytical methods used in reliability analysis of WSN can be found in [3] 

and [6], where the idea of topological reductions, also applied in the current paper, is 

explained in detail. The authors of [7] give a general view on the issue of WSN reliabil-

ity, with a focus on reliability measures, also related to topology and flow distribution. 

A method similar to that presented in this paper is described in [8], where simple facts 

from graph theory are used to compute the mechanical reliability and hydraulic availa-

bility of a water distribution system. However, the method from [8] becomes highly 

complex in the computational sense as the network size increases. As far as statistical 

approach is concerned, the reader is referred to [5] which provides a comprehensive 

outlook on statistical methods in WSN reliability analysis, [2], where Poisson and Cox 

regression is applied for the survival analysis of pipes in a WSN, and [1], where an 

interesting case study is presented along with the application of non and semi-paramet-

ric methods to the failure dataset. 

A water supply network can be modeled by a graph whose vertices represent the 

nodes, and edges represent the pipes. Three types of nodes are distinguished, i.e. intake 

points, supply points, and branching nodes. In Figure 1, an example network model is 

presented. Intake points are marked with arrows directed towards a node, supply points 

– with arrows directed away from a node, branching points are not marked. 

 

Fig. 1. The structure of a simple exemplary network 

A component, i.e. a node or a pipe, is characterized by its capacity defined as the 

maximal amount of water that can flow through the component in a unit of time. Com-

ponents can be either in a working or a failed state. Clearly, a failed component has zero 

capacity. A state of the network is a non-binary function of the states of its components, 

called the network state function. It can be defined in several ways, as further presented. 

Both the component capacities and the network state are positive integers, which in 

practice does not limit the model’s applicability.  

The network state changes as the components fail or undergo repairs and/or replace-

ments. The failure-repair (F-R) process of each component is a Markov one, because 
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a component’s failure and repair intensities have constant values. It is plausible to as-

sume that these processes are independent, hence the network state as a function of time 

is also a Markov process. However, it is only asymptotically homogenous, while the 

F-R processes of individual components are fully homogenous.  

The main result presented in this paper is a method of computing the intensities of 

transitions between the network states. These intensities are basic reliability parameters 

that can be used to find other frequently used reliability indices. The considered method 

is a three-step one. First, the network structure is decomposed, by the so-called state 

factorization, into a small number of derivative networks, each having a series-parallel 

structure. The probability distribution of the state function of the main network’s is 

a linear combination of the probability distributions of the state functions of the deriva-

tive networks. Second, the respective probability distribution for each derivative network is 

computed using a method of series-parallel aggregation developed by the author of this 

work. Third, the inter-state transition intensities for the main network are computed from 

a formula based on the probability distribution of the main network’s state function. 

2. Notation and definitions 

Throughout the paper, the following notation will be used: 

E – the set of network components, E = {e1, …, en}, 

Xi(t) – state of ei at time t (operative or failed), 

pi(t), qi(t) – probability that ei is operative/failed at time t, 

i, I – failure/repair intensity of ei (constant values), 

As Xi(t) is a two-state homogenous Markov process, we have: 
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hence the asymptotic (t  ) values of pi(t) and qi(t) are given by: 
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The notation section continued:  

ci – capacity (throughput) of operative ei; ci has an integer value, 
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ei1, ..., eim  – supply points, 

di1, ..., dim – demands at ei1, ..., eim, respectively, 

Si1, ..., Sim – supply capabilities at ei1, ..., eim, respectively (random variables), 

  – a function expressing the network state w.r.t. the states of its compo-

nents and the given supply/demand relations, 

A() = Pr(  );  availability; a stochastic measure of the network reliability, 

 can be defined in several ways, i.e.: 

1. Percentage of adequately supplied points: 

 
:

1
1

i ii S dm




    (3) 

2. Weighted percentage of adequately supplied points 
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3. Percentage of total demand fulfilled  
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4. Supply capability at a selected supply point 

 iS    (6) 

Finally, we give the definitions of fault, recovery, their intensities, and present the 

formulas from which these intensities can be computed. 

Fault – an event that causes  to fall from a level  to a level < 

Recovery – an event that causes  to rise from a level < to a level   

The adopted assumptions imply that the fault-recovery (F-R) process is a Markov 

one, thus the fault and recovery intensities are respectively defined as follows: 
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In the long run, the above intensities converge to constant values denoted as –() and 

+(), hence the F-R process is asymptotically homogenous. It can be shown [4] that 
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where Ii() is the (generalized) Birnbaum importance of ei, here referred to as -im-

portance, that can be found from the following formula: 

 
1 0( ) Pr ( ) | Pr ( ) |

i ii p pI            (11) 

It will be further demonstrated how other commonly used reliability parameters can 

be found using the intensities +() and –(). As follows from Eqs. (9)–(11), they can 

be computed using the failure/repair intensities of individual components, and A(). 

Thus, the ability to compute A(), given p1, ..., pn, has a key significance for many other 

reliability calculations. An efficient method to find A() is presented in the next two 

chapters. 

3. Transforming the main network into derivative networks 

by means of component-state factorization 

Component-state factorization consists in two-variant modification of the network 

structure with respect to a selected (pivotal) component which is assumed to be either 

operative or failed, depending on the variant. This operation is first performed on the 

main network, and then repeated on derivative networks until a series-parallel structure 

is obtained. The diagram in Fig. 2 shows the binary tree of networks obtained as a result 

of this procedure applied to the example network in Fig. 1. The state of the component e 

is denoted as xe; xe = 1 if e is operative, otherwise xe = 0. For the sake of this example, 

it is assumed that only pipes are subject to failure, and  = SE, i.e.  is the supply ca-

pability of the node E. A factorization step w.r.t. a pipe is performed as follows: If the 

pipe is failed, it is removed from the network diagram, if the pipe is operative, the two 

nodes which it connects are merged into one node. The main network N and the deriv-

ative networks N1, ..., N6 are shown in Figs. 3 and 4. As can be seen, N3, N4, N5, and N6 

have series-parallel structures, thus further factorization is not performed on them.  
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Fig. 2. The factorization tree for N 

 

Fig. 3. The main network N and its derivative networks N1, N2  

ordered from top to bottom 

From the law of total probability we obtain: 

 3 4 5 6( ) ( ) ( ) ( ) ( )FJ DF FJ DF FJ DF FJ DFA p p A p q A q p A q q A          (12) 
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where A() is the -availability of N, A3(), ..., A6() are the -availabilities of the 

derivative networks N3, ..., N6 respectively, i.e. the probabilities that the supply capabil-

ities of the node E in these networks are greater or equal to . 

 

Fig. 4. The derivative networks N3, …, N6 

ordered from top to bottom 

Clearly, the assumption that only pipes can fail is unrealistic and cannot be made in 

practice. Thus, it can be necessary to perform factorization w.r.t. both nodes and pipes. 

The example diagram of such a procedure is presented in Fig. 5. The main network N is 
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composed of the nodes A, B, C, D, and the pipes connecting these nodes. It is assumed 

that  = SD, i.e.  is the supply capability of the node D. A factorization step w.r.t. to 

a node is performed as follows: if the node is failed, it is removed from the network 

diagram along with all the connected pipes, if the node is operative, the diagram remains 

unchanged. To calculate A() – the -availability of N, we have to use the following 

formula: 

1 3 5 6( ) ( ) ( ) ( ) ( )B B C B C BC B C BCA q A p q A p p q A p p p A           (13) 

where A1(), A3(), A5(), and A6() are the -availabilities of the networks located in 

the leaves of the factorization tree.  

 

Fig. 5. The component-state factorization of a simple network w.r.t. nodes and pipes 

Let us note that a factorization step w.r.t. a pipe is only possible if both nodes 

connected by this pipe are operative. Let us also note that a certain problem occurs in 

such a case, namely, how to calculate the capacity of the node merged of the nodes 

connected by this pipe? Below, a set of straightforward rules for this calculation is given. 

A merged node is illustrated in Fig. 6.  
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Fig. 6. The diagram of a merged node 

We have: cA1, cA2, cB1, cB2  – flow capacities of respective inputs/outputs, cAB  – ca-

pacity of the internode flow, cA = B – flow capacity of A merged with B 
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It should be remarked that in the above figure, the arrows marked with cA1, cA2, cB1, 

and cB2 represent total inflows and outflows, i.e. possibly through more than one pipe. 

4. Series-parallel aggregation 

This technique consists in stepwise aggregation of components and/or sub-modules 

arranged in series or in parallel into a module subsequently regarded as one component. 

In the last step the whole system is aggregated into a single component. In Figure 7, the 

reliability block diagram (RBD) of the derivative network N4 is presented. Below the 

figure, the aggregation steps are specified. 
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Fig. 7. The RBD of the derivative network N4 

Aggregation steps for N4: 

Step 1. e1, e2  M1 = ser(e1, e2) 

Step 2. M1, e3  M2 = par(M1, e3) 

Step 3. e4, e5, e6, e7  M3 = ser(e4, e5, e6, e7) 

Step 4. e8, e9  M4 = ser(e8, e9) 

Step 5. M3, M4  M5 = par(M3, M4) 

Step 6. M2, M5  M6 = ser(M2, M5) 

Step 7. e10, e11, e12, e13  M7 = ser(e10, e11, e12, e13) 

Step 8. M6, M7  M8 = par(M7,M8) 

Along with structural aggregation, maximum effective capacities and -availabilities of 

modules obtained by aggregation of components or sub-modules have to be calculated. The 

respective formulas are given in Lemmas 1–5. The first two lemmas give the formulas for 

maximum effective capacities of modules composed of single components connected in 

series or in parallel. Let M denote such a module, and let e1, ..., ek  be components of M, c1, 

..., ck  – capacities of operative e1, ..., ek, d1, ..., dk: demands at e1, ..., ek (if ej is not a supply 

point, then dj = 0), CM – maximum effective capacity of M. 

Lemma 1. For M = ser(e1, ..., ek) it holds that 
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Fig. 8. A module composed of k components connected in series 

Sketch of the proof: analyzing Fig. 8, we conclude that cj >
, ....,

, 1, ...,k

i j k

d j k


    is 

the necessary condition for the effective capacity of ser(e1, ..., ek) to be positive. If this 

condition is fulfilled, we have: 
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1 1 1ser( , , ) ser( , , ) 1 1min[ , ]

j je e e e j jC C c d
      (19) 

wherefrom  (18) is obtained by induction. 

Lemma 2. For M = par(e1, ..., ek) it holds that 
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Fig. 9. A module composed of k components 

 connected in parallel 

Sketch of the proof: analyzing Fig. 9, we conclude that CM given by  (20) is the sum 

of the effective capacities of e1, ..., ek, where such capacity for ej is equal to 

max[(cj – dj), 0].  

The two following lemmas show how to compute -availabilities of the modules 

presented in Figs. 8 and 9. Let  M and AM() = Pr( M  ) denote respectively the 

(random) effective capacity and the effective -availability of the module M. 

Lemma 3. For M = ser(e1, ..., ek) it holds that 
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Let us note that the effective throughput of ser(e1, ..., ek) can be equal to either 0 or 

CM, where CM is given by  (18). 
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Lemma 4. For M = par(e1, ..., ek), the following recursive formula holds: 

{1, ..., } {1, ..., 1} {1, , 1}( ) max( , 0) ( ), 2, ...,j j j j j j jA p A c d q A j k   
        
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AM() should be computed for all integer [1, CM], where CM is given by (20). 

The proofs of lemmas 3 and 4 are based on formulas for the distribution functions of 

the minimum and sum of independent, integer-valued random variables. 

To end this chapter, it will be demonstrated how -availabilities of modules composed 

of sub-modules rather than single components are calculated. Let M = ser(M1, ..., Mk)  

or M = par(M1, ..., Mk), where M1, ..., Mk are sub-modules of M. 

Lemma 5. If M = ser(M1, ..., Mk) then we have:  
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where 
iMd  is the total demand of all components of Mi. AM() should be computed for 

all integer  such that 
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which is equivalent to the following condition, better suited for computational purposes: 
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Lemma 6. If M = par(M1, ..., Mk), then we have the following recursive formula:  
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AM() should be computed for all integer   [1, CM1 + … +  CMk]. 

The above lemma is proved in a similar way as formulas (21) and (22). To illustrate 

the results of this chapter, let us find A() for a small series-parallel network whose 

RBD is presented in Fig. 10. 

 

Fig. 10. The RBD of a small series-parallel network 

We assume that c1 = 3, c2 = 4, c3 = 5, c4 = 6, c5 = 8, c6 = 7, and d1 = 1, d2 = 1, d3 = 2, 

d4 = 2, d5 = 1, d6 = 1. The arrow denotes are aggregated to. A() is computed in the 

following aggregation steps: 

Step 1. e1, e2  M1 = par(e1, e2). According to (22), we have: 
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Step 2. M1, e4  M2 = ser(M1, e4). According to (24) we have: 
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Step 3. M2, e3  M3 = par(M2, e3). According to (25) we have: 

{1,2,3,4} 3 {1,2,4} 3 {1,2,4}( ) ( ) ( 3)A q A p A      

Hence 

{1,2,3,4}

{1,2,3,4} 3 2 4 3

{1,2,3,4} {1,2,3,4} 3 2 1 4 3

{1,2,3,4} 3 2 4

{1,2,3,4} {1,2,3,4} 3 2 1 4

{1,2,3,4}

( ) 1 , 0

(1)

(2) (3)

(4)

(5) (6)

( ) 0 , 6

A

A q p p p

A A q p p p p

A p p p

A A p p p p

A

 

 

 

 

  



 

 

 

Step 4. M3, e5, e6  M4 = ser(M3, e5, e6). According to (24), we have: 
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{1,2,3,4,5,6} 3 2 1 4 3 5 6

{1,2,3,4,5,6} 3 2 4 5 6

{1,2,3,4,5,6} {1,2,3,4,5,6} 3 2 1 4 5 6

{1,2,3,4,5,6}

( ) 1 , 0

(1) ( )

(2)

(3) (4)

( ) 0 , 4

A

A q p p p p p p

A p p p p p

A A p p p p p p

A

 

 

 

 



 

 
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5. Numerical computation  

of -availability and other reliability parameters 

As indicated at the end of Chapter 2, computing the -availability of a considered 

network is necessary for finding other important reliability parameters. A() should be 

computed for each integer  such that 0 < A() < 1. For this purpose, the component-

state factorization, presented in Chapter 3, and the series-parallel aggregation, based on 

the formulas (21)–(25), are applied. Let us note that for a larger network, only the nu-

merical values of A() should be found. Deriving a closed formula, as in the last exam-

ple, is practically impossible in such a case.  

Once A() is calculated for all appropriate , then the fault and recovery intensities 

can be found from (9) and (10). Let us recall that fault and recovery are defined in 

Chapter 2. Prior to applying these formulas, the -importances Ii() have to be com-

puted from (11), for i = 1, ..., n. All these computations require pi, i = 1, ..., n to be the 

known data. If only the failure and repair intensities of the network’s components are 

given, the respective probabilities can be obtained from (2). 

For a more complete reliability characteristic of a water supply network, we also need 

some time-related parameters. Before defining them, let us introduce some more notation: 

 (t) – the supply capability of a selected supply point at time t, 

Tk, – length of the kth period during which  (t)  , 

Uk, – length of the kth period during which  (t) < . 

As the F-R process is an asymptotically homogenous Markov one, Tk, and Uk, are 

asymptotically (k  ) exponential random variables with the parameters () and 

+(), respectively. The first two of the aforementioned parameters are  and  – the 

asymptotic expected lengths of Tk, and Uk, respectively. We have: 

 
,

1
lim ( )

( )
k kE T 

 
 

    (26) 

 
,

1
lim ( )

( )
k kE U 

 
 

    (27) 

because the expected value of an exponential random variable is equal to the inverse of 

its parameter.  

The last two parameters are defined as follows:  

n
–(t)/n

+(t) – the expected number of faults/recoveries in a time period of length t, 

provided that the system has long been in operation. It can be shown that 
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 ( ) ( )
1 1

( ) ( )

t t
n t n t 

  

   

 

 

  




 (28) 

Clearly, we only have to know () and +() to apply the formulas (26)–(28). 

Let us stress that time units should be used cautiously! For ezample, if the intensities 

are given in h–1, then n
–(8760) is the expected number of faults in a year. 

6. Conclusion 

A new method of computing selected reliability parameters has been presented, 

characterizing the fault-and-recovery process of a water supply network. The approach 

to reliability analysis of water supply systems is similar to that found in [2], [6], and [8]. 

In the examples given in section 3 it is assumed that the network has only one intake 

point, and  – the network-state function – is defined as the supply capability of a se-

lected supply point. It is possible to apply the presented methodology also for networks 

with multiple intake points. For this purpose a multiple-sources network has to be trans-

formed into a single-source one by adding one virtual collective source node and con-

necting it to the actual source nodes with virtual pipes of appropriate capacities. Modi-

fying the presented results so as to cover the cases of the other network-state functions 

defined in section 2 will be the subject of the further research. 
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