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We study a cost allocation problem under asymmetric information, and show that the ex ante in-
centive compatible core is non-empty. We also obtain a non-emptiness result for the incentive com-
patible coarse core, which is one concept of an interim core. 
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1. Introduction 

This study examines the non-emptiness of the core in a cost allocation problem 
where agents are asymmetrically informed about the cost of options (e.g., networks, 
equipment to produce goods) they can choose. Cost allocation problems have been 
important research topics in cooperative game theory and operations research (see 
[11, 23] for surveys of the area). 

A group of agents chooses one of several options, and its aggregate cost is allocat-
ed among the agents. The agents have private information on the state of nature that 
determines the cost of the options they can choose. They form a coalition, which uses 
a mechanism to choose one option (as a function of the reported private information) 
and share its cost. We assume that the actual cost of the option chosen is publicly veri-
fiable (before the cost is shared among agents), but the actual costs of the other uncho-
sen options are assumed to be unverifiable. The latter assumption implies that some 
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agent might report his type falsely to avoid paying a higher cost (see the example in 
Section 3), and we impose incentive compatibility conditions on the mechanism. 

The theory regarding the non-emptiness of the core when information is asymmet-
ric can be divided into two cases (see [7, 8] for surveys of this area). The first case 
occurs when a coalition is formed before each player receives private information  
(ex ante), and the second occurs when a coalition is formed after each player receives 
private information (interim). Suppose that some agents can acquire information about 
the cost of some option by inspection (without any fee). The ex ante scenario corre-
sponds to the case where a coalition is formed before such inspections; whereas the 
interim scenario corresponds to the case where a coalition is formed after such inspec-
tions. 

The non-emptiness of the core under asymmetric information has been analyzed, 
mainly in exchange economies. Forges, Mertens, and Vohra [6] show that the ex ante 
incentive compatible core and the incentive compatible coarse core, one concept of an 
interim core, might be empty in quasilinear exchange economies. Vohra [20] gives 
several sufficient conditions for which such cores are non-empty. Forges [5] considers 
assignment games with asymmetric information and obtains several non-emptiness 
results regarding the cores. In this study, we prove that in cost allocation situations, 
both the ex ante incentive compatible core and the incentive compatible coarse core 
are non-empty if the core in each state is non-empty. 

The rest of the paper is organized as follows. In Section 2, we describe the model 
and present several examples. We define the mechanisms that each coalition uses and 
incentive compatibility conditions in Section 3. Sections 4 and 5 present non-empti- 
ness results for the ex ante and interim scenarios, respectively. Finally, Section 6 con-
cludes our study. 

2. The model 

2.1. Notation 

Let {1, 2, ..., }N n be a set of agents and SX  be the set of options coalition ( )S N
can choose. The set of states that determine the cost of each option is denoted by   and 
the set of player i’s private information (an information partition on  ) by .iT For nota-

tional convenience, we denote :S i
i S

T T


  and \{ }: .i N iT T   Let ( , )SC x   be the cost 

of S Sx X  when the true state is ,  and  be the probability distribution of 
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.NT  We assume that agents are risk-neutral with respect to cost, i.e., agents care 

only about the expected cost3. 

2.2. Examples 

We can consider the following applications of the model. 

Example 1. Agent i needs iq  units of a (homogeneous) good. When a coalition S 

is formed, the coalition produces i
i S

q

  units of the good, and shares the cost of pro-

duction. To produce the good, they need to use one of several items of equipment, 
each with different cost functions (increasing, concave). Agents have different infor-
mation about their cost functions. The questions are what equipment to choose and 
how to allocate the total cost among agents. 

Example 2. A group of agents plans to set up a public facility (e.g., a park) in 
some location. Let SX  be the set of locations where coalition S can set up a facility 

(we assume that if ,S S   then ).S SX X  Agents have different information about 

cost when the facility is set up at Sx  (e.g., only some player in coalition S knows the 

cost of ).Sk X  The questions are where do they set up the facility and how to allo-

cate the total cost. 

Example 3. Minimum cost spanning tree games4. A group of agents, geograph-
ically separated, want some particular service provided by a common supplier, which 
we call the source. Then, we need to find a network that connects the agents to the 
source. Minimum cost spanning tree (MCST) games, introduced by Claus and Kleit-
man [2], analyze how the aggregate cost should be allocated to the agents. 

We consider a situation where the costs of links are not fully known to agents. 
Then, for each ,S N  SX  is the set of networks such that all the agents in S are con-

nected to the source, and   is the set of cost profiles of links. 

 _________________________  

3In exchange economies, Vohra [20] shows that if agents’ utilities are linear, then both the ex ante 
incentive compatible core and the incentive compatible coarse core are non-empty. However, our results 
cannot be directly inferred from his argument because it relies on the convexity of feasibility sets, which 
our setup does not satisfy. However, we use a similar approach to show the non-emptiness of the incen-
tive compatible coarse core. 

4Kamishiro [12] shows that the ex ante incentive compatible core of the minimum cost spanning tree 
game is non-empty, and the current study can be considered an extension of this result. We also add more 
results about the interim stage. 
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3. Incentive compatible mechanisms 

Let us consider a mechanism S  for coalition ( ).S N The mechanism 

: ( , )S S Sz c   chooses one of the feasible options for S according to the reported types 

of the members of S, and allocates the aggregate cost among agents in S, depending on 
the option it has chosen, reported types, and the observed event. Here, Sz  and Sc  are 

mappings from ST  to SX  and S SX T    to ,SR  respectively. 

The mechanism S  is implemented according to the following scenario. 

1. After a vector of type N Nt T  and a state    are selected according to π, 

every agent i N  is informed of his own type .i it T  

2. If S has formed, each member of S reports his type to S  (although not neces-

sarily truthfully)5. If the type profile St  is reported, then ’sS  interim probability of 

the state being    is given by ( | ) ( , ) / ( ).S S St t t      If the reported type pro-

file St  is such that ( ) 0,St   then we define ( | ) 0St    for all .   

3. Afterward, S  chooses an option ( )S S Sz t X  according to .St  

4. Then, s knows the actual cost ( ( ), )S SC z t   and allocates the total cost to mem-

bers of S (we denote , ( ( ), , )S i S S Sc z t t   as the cost each agent i must pay). 

The mechanism S  must satisfy the following feasibility conditions. 

 Measurability 

( ( ), , ) ( ( ), , )S S S S S S S Sc z t t c z t t  if ( ( ), ) ( ( ), )S S S SC z t C z t   

 Cost-coverage 

, ( ( ), , ) ( ( ), )S i S S S S S
i S

c z t t C z t 


 for all S St T  and all    

The measurability condition implies that each coalition can only use information 
based on the observed event. The equality in the measurability condition means that 
although both   and   lead to a different cost profile other than ( ),S Sz t  the mecha-

nism must allocate the aggregate cost to the members of S in the same way. The cost- 
-coverage condition implies that the sum of the payments made by the agents in S is at 

 _________________________  

5By the revelation principle, all implementable decisions of S in Bayesian Nash equilibrium can be repre-
sented as the outcome of the incentive compatible mechanism, which we defined above (see [14] or [15]). 



Allocation problem under asymmetric information 21

least the aggregate cost. Let SM  denote the set of mechanisms for S satisfying these 

two conditions. 
Next, we define the incentive compatibility of .S  Loosely speaking, the incen-

tive compatibility condition means that even if agents falsely report their private in-
formation, they do not gain (i.e., they cannot decrease (expected) costs). Consider 
i S  and let it  be the true type of agent i and ir  the reported type. Then, agent i’s 

expected cost is 

\{ }

, \{ } \{ } \{ }
,

( | , ) : ( ( , ), ( , ), ) ( , | )
S i

i S i i S i S i S i i S i S i i
t

Ec t r c z r t r t t t


      

We denote ( | )i S iEc t  as the (interim) expected cost of agent i when he truthfully 

reports his type: 

( | ) : ( | , ).i S i i S i iEc t Ec t t   

The mechanism S  satisfies incentive compatibility if 

( | ) ( | , )i S i i S i iEc t Ec t r   

for all i S  and all , .i i it r T  Let *
SM  denote the set of feasible and incentive compat-

ible mechanisms for S 6. By definition, * .S SM M  

Note that in this game, we consider cost instead of utility; thus, the inequality sign 
is reversed compared to standard game or implementation theory such as in 
Holmström and Myerson [10] and Mas-Colell, Whinston and Green [14]. There is one 
more difference between our definition and theirs: In our definition, the cost profile 
depends upon the option and an observed event, while in their definition agents’ utili-
ties depend upon the option (or allocation bundles) and their (unobserved) private 
information. Although our definition allows each coalition to use information from an 
observed event, incentive constraints still matter, as the following example shows. 

Example. MCST game. Let us consider an MCST game to observe the conditions 
(particularly, incentive compatibility) imposed on the mechanisms. Let {1, 2}N   and 0 

be the source. The costs of possible links are shown below, where the cost of the link 
{01} may be 4 or 16. Each occurs with probability 1/2. We assume that only agent 1 
knows the true cost of the link {01} as private information. Then, { , }   and 

 _________________________  

6The asterisk indicates incentive compatibility such as that in Holmström and Myerson [10]. 
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1 1 1{ , }T t t  where   and 1t correspond to the case where the cost of the link {01} is 4, 

and   and 1t   correspond to the case where it is 16. 

 

Fig. 1. MCST game under asymmetric information 

When the information structure is complete, the allocation rule suggested by Bird 
[1] (which we call the Bird mechanism) gives a cost profile in the core [9]. In the case 
where the information structure is incomplete, we can check that the Bird mechanism 
violates incentive compatibility7. 

The Bird [1] mechanism connects the links so that the total cost is minimized, and 
each agent pays the cost of the link incident to him on the unique path from the source. 
In this example, each agent’s cost according to the reported type of 1T  and the true 

state implemented by the Bird mechanism is represented by Table 1. 

Table 1. Cost allocation rule  
by the Bird mechanism 

t ω ω′ 

t1 4, 2 16, 2 

 2, 10 

 
Agent 1’s reported type is used to label the rows in the table, and the state is used 

to label the columns. The two numbers in each cell are the agents’ costs: the first 
component is the cost paid by agent 1, while the second is that paid by agent 2. If 1t   is 

reported, then the mechanism does not connect the link {01}. In this case, we are not 
able to assign different cost profiles according to the state (by measurability). 

 _________________________  

7The same point was also shown by Kamishiro [12]. This result is due to the fact that the Bird mech-
anism violates cost monotonicity [3]. 
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Consider the situation in which the state is , i.e., the true type of agent 1 is 1.t  If 

agent 1 announces his private information truthfully (i.e., reports 1t ), agent 1’s cost 

is 4 (the cost of link {01} would be 4, because the state of   is  ). Whereas, if agent 1 
reports 1,t  his cost is only 2. Therefore, this mechanism violates incentive compatibil-

ity. 

4. Ex ante stage 

In this section, we consider the situation where a coalition is formed at the ex ante 
stage. We denote ( )i SEc   as the (ex ante) expected cost of agent i S  from the 

mechanism :S  

,
,

( ) ( , ) ( ( ), , )
S

i S S S i S S S
t

Ec t c z t t


      

Let *
N NM   and *

S SM   for .S N  The mechanism S  ex ante dominates N  

for coalition S if ( ) ( )i S i NEc Ec   for all .i S  The ex ante incentive compatible 

core (ex ante IC core) mechanism is the set of all mechanisms *
N NM   that are not 

ex ante dominated by any mechanism *
S SM   for any coalition S. The ex ante IC 

core is the set of all expected cost vectors ( )i i Nx   such that ( )i i Nx Ec   for all ,i N  

where N  is an ex ante incentive compatible core mechanism. 

We define a cooperative game corresponding to the ex ante cost allocation situa-
tion, i.e., the cost function *

AC  in this setup. A coalition S achieves a cost vector 

( ) S
i i Sx x R  (i.e., * ( )),Ax C S  if there exists an incentive compatible mechanism 

*
S SM   such that ( )i i Sx Ec   for every .i S  

We can readily check that if for *( ) ( )i i S Ax x C S   and ( ) ,S
i i Sx x R  

i i
i S i S

x x
 

  holds, then * ( ).Ax C S  In fact, x  can be achieved by modifying the 

cost allocations used for x  independently of types, i.e., in an incentive compatible 
way. Thus, the cooperative game is a game with side payments (hereafter called a TU 
game), and we can describe the cost function as 

*

* ( ) : min ( ) ( | ).
S S

S S

A S i S iM
i S t T

c S t Ec t


 


 

    
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Here, the minimum is taken over all incentive compatible mechanisms .S  This de-

fines the ex ante cost allocation game. 
The core of a TU game over N is the set of all cost vectors, which can be achieved 

by the grand coalition, ( )i i Nx x  , *( )i
i N

x c N


  and cannot be improved on by any 

coalition, i.e., *( )i
i S

x c S


  for every S. The ex ante IC core is given by the set of 

expected cost vectors ( )i i Nx x   that belong to the core of the ex ante cost allocation 

game *(( ( )) .A S Nc S   

As a benchmark, we consider the cost function without incentive compatibility 
constraints 

( ) : min ( ) ( | ).
S S

S S

A S i S i
M i S t T

c S t Ec t


 
  

    

By definition, * ( ) ( ).A Ac S c S  

We also define the core for each state of nature. If the state of nature is specified, the 
core could be defined in the standard way (complete information case): for each , 
let ( , ) : min ( , ).

S S
S

x X
c S c x 


  The core of the cost allocation game in state    is given 

by the set of allocations (( ( )) ,N
i i Ny R   satisfying ( ) ( , )i

i N

y c N 


  and 

( ) ( , )i
i S

y c S 


  for every .S N  

Without incentive constraints, this model can be interpreted as a cost allocation 
game with symmetric uncertainty, and we can easily obtain a non-emptiness result for 
the ex ante core (without IC) when the core in each state is non-empty. However, when 
incentive compatibility conditions are imposed, then showing that the core is non-empty 
is not trivial. In exchange economies, Vohra [20] and Forges, Mertens and Vohra [6] 
give examples where the ex ante IC core is empty. In our setup, we can show that the 
ex ante IC core is non-empty if the core in each state is non-empty. 

Theorem 1. If the core of the cost allocation game in each state    is non-
empty, then the ex ante IC core is non-empty. 

Proof of Theorem 1. To prove the theorem, it suffices to show *( ) ( ),A Ac N c N  i.e., 

there exists an incentive compatible mechanism that achieves first-best efficiency [6]. 
We consider a proportional mechanism for coalition N. This mechanism allocates 

the total cost among agents at a constant rate, whichever the reported type and ob-
served event. This mechanism is denoted by [ ],P

N Nk where ( )N i i Nk k   is an  
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N-dimensional vector satisfying 0ik   for all i N  and 1i
i N

k


 . Using this mechanism, 

each agent i pays a fraction ki of the aggregate cost. The mechanism [ ] : ( , )P P P
N N N Nk z c   

is represented by the following: 

( ) : arg min ( | ) ( , )
N N

P
N N N N

x X
z t t C x



  


  8 

, ( ( ), , ) : ( ( ), )P
N i N N N i N Nc z t t k C z t   

This mechanism clearly satisfies the feasibility conditions. It also satisfies incen-
tive compatibility, because 

,
,

,

,

,

,
,

( | , )

( , | ) ( , , )

{ ( , | ) ( ( , ), )}

{ ( | ) ( | ) ( ( , ), )}

{ ( | ) ( | ) ( ( , ), )}

( , | ) ( , , )

i

i

i

i

i

P
i N i i

P
i i N i i i

t

i i i N i i
t

i i i N N i i
t

i i i N N i i
t

P
i i N i i i

t

Ec t r

t t c r t

t t k C z r t

k t t t C z r t

k t t t C z t t

t t c t t













  

  

   

   

  











 

 

 

 

 



















( | )P
i N iEc t



 

 

Remarks 
1. In Examples 1 through 3, the core of the cost allocation game in each state 

   is non-empty. Hence the ex ante IC cores of these games are non-empty. 

 _________________________  

8To simplify the argument, we assume that the minimizer is a singleton. If not, then by taking proba-
bility distribution on minimizers, the same argument can be applied.  
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2. Forges [5] shows that to obtain ex ante characteristic functions in assignment 
games with asymmetric information, one cannot restrict the set of mechanisms to de-
terministic ones without loss of generality. In our setup, however, we can restrict our 
argument to deterministic mechanisms to obtain ex ante cost functions, which can be 
derived in a similar way to the one used in the above proof by constructing a propor-
tional mechanism for each coalition. 

3. In this cost allocation game, we find that one of the proportional mechanisms 
belongs to the ex ante IC core. The appropriate proportion can be determined as fol-
lows. Let ( )i i Nc   be an element of the core of the ex ante cost allocation game 

(( ( )) .A S Nc S   Then, if we define the rate ( )i i Nk   as : ,i
i

j
j N

c
k

c





 we can show that the 

mechanism leads to the ex ante IC core allocation. 
For example, let {1, 2}.N   There are two states of the world, { , },    each 

of which occurs with probability 1/2. Only agent 1 knows the state from his private 
information ( 1 1 1{ , }).T t t  Let 1 1{ },X x 2 2{ }X x and 1,2 1 2{ , }.X x x The cost pro-

file is 1( , ) 6,C x    1( , ) 14,C x    and 2 2( , ) ( , ) 10.C x C x    

Then, the ex ante cost function is ({1}) 10,Ac  ({2}) 10,Ac   and ({1, 2}) 8.Ac   

We can check that the allocation 1 2( , ) (4, 4)c c   belongs to the core of the cost func-

tion, and then 1 2 1/2.k k   The allocation rule corresponding to this proportion is 

shown in Table 2. 

Table 2. An example of the ex ante  
IC core allocations 

t ω ω′ 

 3, 3 7, 7 

 5, 5 

 
We can check that this allocation rule belongs to the ex ante IC core. 

5. Interim stage 

At the interim stage, agents already possess private information when they engage 
in coalitional negotiations. Hence, to define notions of the core at the interim stage, we 
need to specify to what extent agents can exchange information in a coalition, and 
depending on this, several concepts of the core can be considered. If we assume that 
agents are not allowed to exchange information until they are in a coalition, then the 
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IC coarse core defined by Vohra [20] is an appropriate notion of the core. It is larger 
than other interim cores in which the blocking of agreements can be facilitated by 
information transmission among agents (e.g., the credible core in [3]). 

5.1. The incentive compatible coarse core 

First, we consider the non-emptiness of the IC coarse core in cost allocation situa-
tions. According to this concept of the core, agents base their objections on events that 
are common knowledge inside the coalition at the interim stage. For an event ,NE T
let iE  be the corresponding set of types for agent i, i.e., : { | }.i i NE t t E  An event 

NE T  is common knowledge for S if ( | ) 0i it t    for all ,i S i it E  and 

( , ) .i it t E   If S is a singleton, then common knowledge is synonymous with 

“knowledge” (because each agent already knows his own type at the interim stage). 
Let *

N NM   be a feasible and incentive compatible mechanism. Coalition S has 

an incentive compatible coarse objection to N  if there exists an event E that is com-

mon knowledge for S and an incentive compatible mechanism *
S SM   such that 

( | ) ( | ).i S i i N iEc t Ec t   The incentive compatible coarse core (IC coarse core) 

mechanism is the set of all mechanisms *
N NM   that do not have any incentive com-

patible coarse objection. The incentive compatible coarse core is the set of all interim 
expected cost vectors ,( ( ))

i ii i i N t Tx t    such that ( ) ( | )i i i N ix t Ec t  for all i N  and all 

,i it T  where N  is an incentive compatible coarse core mechanism. 

Theorem 2. If the core of the cost allocation game in each state    is non- 
-empty, then the IC coarse core is non-empty. 

To simplify mathematical expressions, we limit our discussion to the case where 
( | )Nt   is either 1 or 0 for all N Nt T  and all ,   i.e., collecting all the agents’ 

private information together resolves all uncertainty. (Since we assume that agents are 
risk-neutral, this assumption does not affect the argument below.) 

Wilson [21] showed that the coarse core (without incentive constraints) of a stand-
ard exchange economy is non-empty, since it is the standard core of an appropriately 
defined balanced NTU cooperative game with players ( , ).ii t  Vohra [20] extended his 

argument to exchange economies with linear utility functions, and Forges [5] extended 
this to assignment games. We proceed in a similar way and establish that the IC coarse 
core is the core of an NTU function. 

The key factor in showing the non-emptiness of the core is the lemma given below 
(similar lemmas are used in Vohra [20] and Forges [5]). 



Y. KAMISHIRO 28

Lemma. Suppose that the core of the cost allocation game in each state    is 
non-empty. Let S be a balanced family of coalitions with associated weights 

( ),S S S and let S  be a feasible mechanism for S. Consider the following mecha-

nism for N : ( , ) :N N Nz c   

( ) : arg min ( | ) ( , )
N N

N N N N
x X

z t t C x


  


   

, ,
,

( ( ), , ) : ( ( ), , )N i N N N S S i S S S
S S i

c z t t c z t t  
 

 
S

 

where St  is the projection of Nt  onto the S-coordinate. Then, N is feasible and 

,

( | , ) ( | , )i N i i S i S i i
S S i

Ec t r Ec t r  
 

 
S

 

In particular, if every S  is incentive compatible, so is .N  

Proof of Lemma. We use the Bondareva–Shapley [19] theorem, which states that 
a TU game has a nonempty core if and only if it is balanced, to prove the lemma. Re-
call that a family S of coalitions is balanced if there exist weights S  ( SS ) such that 

for all ,i N
,

1S
S S i


 


S

and that a game c (represented by its cost function) is bal-

anced if ( ) ( )S
S

c S c N



S

 for every such family. 

Since the core of the cost allocation game in each state    is non-empty, by 
balancedness, the following holds: for each ,   for all ,S S  and for all ,S Sx X  

there exists N Nx X  such that ( , ) ( , ).N S S
S

C x C x  


 
S

 

Using the above, we can show that N  satisfies the cost-coverage condition, be-

cause 

, ,
,

( ( ), ) ( ( ), )

( ( ), , ) ( ( ), , )

N N S S S
S

S S i S S S N i N N N
S S i i N

C z t C z t

c z t t c z t t

  

  



  



 



 

S

S

 

If S is incentive compatible for every S, then so is N , since the reports of agents 

in N\S play no role.  
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Proof of Theorem 2. As in [21], let us construct an auxiliary NTU game, in which 
the players are of the types from the original model. A typical player is denoted ( , )ii t  

and there are | |i
i

T players. The cost function of player ( , )ii t  is ( | ).i iEc t  The grand 

coalition is ( , ),NN T and other allowable coalitions are restricted to the form 

( , ) {( , ) | , },i i iS E i t i S t T   where S N  and E is a common knowledge event 

for S. The feasible cost set for S is derived by applying the cost functions ( | )i iEc t  to 

the set of feasible mechanisms. We can show by a standard argument that for any bal-
anced collection of coalitions and corresponding mechanisms, the mechanism con-
structed as in the Lemma above is feasible for the grand coalition. The NTU game is, 
therefore, balanced and by Scarf’s theorem [17], it has a non-empty core.  

5.2. Interim core notions with information transmission 

As a different concept of the core, we consider the core based on endogenous in-
formation transmission in which each blocking move is identified with an equilibrium 
based on a communication mechanism used by coalitions. This approach was pro-
posed by Serrano and Vohra [18]. They showed that this notion of core encompasses 
other notions proposed in the literature such as the credible core of Dutta and Vohra [4] 
and the virtual utility core of Myerson [16], depending on the constraints upon the 
mechanisms that each coalition can use. If random mechanisms are allowed and there 
is no restriction on randomization, the appropriate notion of a core is the randomized 
mediated core of Serrano and Vohra [18]. It is known that the randomized mediated 
core is a subset of the virtual utility core and the credible core. 

We can show that the randomized mediated core might be empty in cost allocation 
situations. Since there is no restriction on the mechanisms in the definition of the ran-
domized mediated core, such a core would be almost identical to the ex post core with 
(interim) incentive compatibility, where ex post refers to the case where the type pro-
file is commonly known by all agents. In this section, we give an example and show 
that the ex post core with (interim) incentive compatibility in this example is empty9. 

Using almost the same steps as those in Example 4.1 from Kamishiro and Serrano 
[13], we can show that the randomized mediated core is empty in the given example. 
However, we omit the proof here. 

 _________________________  

9This numerical example is based on Young [22], which shows that there is no core allocation rule 
that is coalitionally monotonic (in complete information settings). 
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Example. There are five agents, {1, 2, 3, 4, 5}.N   There are two states of the 

world,   and .  Only agent 2 is informed of the true state as his private information

2 2 2( { , }).T t t  

Let ˆ : {{1, 5}, {1, 2, 4}, {1, 4, 5}, {1, 2, 4, 5}, }NS . In each coalition, the set of op-

tions and cost of each option is determined as follows. 

 If ˆSS , then the coalition has only one option (i.e., SX  is a singleton) and the 

cost of this option is independent of the true state. The cost profile of the family of sets 

other than Ŝ  is 

1 1
( , ) ( , ) 3S SC x C x      1 {3, 5}S   

2 2
( , ) ( , ) 3S SC x C x    2 {1, 2, 3}S 

3 3
( , ) ( , ) 9S SC x C x    3 {1, 3, 4}S   

4 4
( , ) ( , ) 9S SC x C x    4 {2, 4, 5}S 

 For jS S ( 1, 2, 3, 4),j   define ( , ) min{ ( , ) : }S S j
j

C x C x S S    for .   

 For ˆ \ ,S NS there are two options, Sx  and .Sx  The cost profile of the options 

in each state is given as ( , ) 9,SC x    ( , ) 15,SC x    and ( , ) ( , ) 12.S SC x C x      

 For N, ( , ) 11,NC x    ( , ) 15,NC x    and ( , ) ( , ) 12.N NC x C x      

Then, every ex post core allocation rule needs to satisfy the conditions 

2 2( ( ), , ) (0, 1, 2, 7, 1)N Nc z t t    and 2 2( ( ), , ) (3, 0, 0, 6, 3).N Nc z t t     Hence, agent 2 

has an incentive to falsely identify his type when his true type is 2 .t  This means that 

the ex post core with (interim) incentive compatibility is empty, although the core in 
each state is non-empty.   

6. Conclusion 

We have defined cost allocation problems under asymmetric information and 
showed that both the ex ante IC core and the IC coarse core are non-empty in these 
situations. Hence, our framework can be seen as deriving sufficient conditions for the 
non-emptiness of these cores. Obtaining necessary conditions for the non-emptiness of 
these cores would be an interesting open problem. 
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An example has also been presented in which the randomized mediated core is 
empty in cost allocation situations. It is not clear whether we can obtain any results on 
the non-emptiness of the core when there are some restrictions on the mechanisms 
available (the credible core and the virtual utility core would be appropriate notions of 
the core). However, this would be a topic for future research. 

As a different (but somewhat similar) situation, we could also consider the case 
where a group of agents chooses one of several options, and its aggregate “benefit” is 
allocated among the agents. (The agents have private information on the state of na-
ture, which determines their benefits from the options they can choose.) If the cores 
are defined in appropriate ways, we can similarly obtain results on the non-emptiness 
of the cores. In this situation, if the information structures are complete, then the 
framework can be embedded into classical TU games. The extension to environments 
without side payments also remains a significant topic. 
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