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PROBABILITIES ON STREAMS AND REFLEXIVE GAMES 

Probability measures on streams (e.g. on hypernumbers and p-adic numbers) have been defined. 
It was shown that these probabilities can be used for simulations of reflexive games. In particular, it 
can be proved that Aumann’s agreement theorem does not hold for these probabilities. Instead of this 
theorem, there is a statement that is called the reflexion disagreement theorem. Based on this theorem, 
probabilistic and knowledge conditions can be defined for reflexive games at various reflexion levels 
up to the infinite level. 
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1. Introduction 

Probabilities on streams were defined for the first time in papers [46, 47]. They 
are a natural generalization of probabilities on hypernumbers and p-adic numbers. 
Surveys and many details on the theory of p-adic valued probabilities may be found 
in [19–23, 41]. Some basic properties of non-Archimedean (p-adic, as well as hyper-
number-valued) logical multiple-validity are considered in [41, 43–45, 48]. Recall that 
the fundamental work on non-Archimedean systems is [37]. 

All the results of this paper are obtained due to some basic features of streams and 
coinductive probabilities on them. Streams refer to mathematical objects which cannot 
be generated as inductive sets. For more details please see [15, 18, 31, 32, 35, 36–40]. 
Using these probabilities on streams, the reflexion disagreement theorem (theorem 2, 
section 3) can be readily proved, which contradicts Aumann’s agreement theorem 
proved on standard real probabilities. It is possible to simulate reflexive games on 
coinductive probabilities. It is assumed that the reader knows some basic notions of 
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speech act theory (see [50–52]), such as performative, illocutionary and perlocutionary 
effects. In this paper I propose a formalization of the notion “perlocutionary effect” to 
coinductively define knowledge operators in reflexive games. 

This research is being fulfilled by the support of FP7-ICT-2011-8 and UMO-
2012/07/B/HS1/00263. 

2. Why can we reject Aumann’s agreement theorem? 

Aumann’s agreement theorem [3, 4] actually says that two agents acting rationally 
(according to Bayesian formulas) and with common knowledge of each other’s beliefs 
cannot agree to disagree. More specifically, if two people share common priors, and 
have common knowledge of each other’s current probability assignments (their 
posteriors for a given event A are common knowledge), then they must have equal 
probability assignments (these posteriors must be equal). It is one of the most 
important statements of game theory, epistemic logic and so on. For example, 
according to this statement, any rational player has to behave in the same manner 
under the same circumstances. Rational players always have common knowledge, they 
know all the parameters of a game and are sure that their opponents know that they 
know the parameters of the game, that they know that they know and so on ad 
infinitum. 

To prove his theorem, Aumann appeals to representing the possibility operator 
( )i ωP  and the common knowledge operator Ki as least fixed points, i.e. as inductive 

sets. Let us remember their definitions. 
Let Ω  be a finite set of possible states of the world, which are called propositions, 

N be a set of agents, call them i = 1, ..., N. Agent’s i knowledge structure is a function 
Pi which assigns to each ω ∈ Ω a non-empty subset of Ω. Pi is a partition of Ω: each 
world ω belongs to exactly one element of each Pi, i.e. Ω  is a set of mutually disjoint 
subsets Pi whose union is Ω. Then Pi(ω) is called i's knowledge state at ω. This means 
that if the true state is ω, the individual only knows that the true state is in Pi(ω). We 
can interpret Pi(ω) probabilistically as follows: ( ) = { : ( | ) > 0}i iPω ω ω ω′ ′P . Then all 
propositions in Ω in any of the N partitions form a σ-field A. ( )i Aω ⊆P  is interpreted 
as meaning that at ω agent i knows that A has occurred, i.e. ω′ ∈ A for all states ω′ that 
i considers possible at ω. 

For each i, the expression below defines the knowledge operator Ki which, applied 
to any set A ∈ A, yields the set iK A∈  A of worlds in which i knows A: 

 = { : ( ) }i iK A Aω ω ⊆P   
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The most important property of the knowledge operator is ,iK A A⊆ i.e. if an 
agent knows that event A has occurred whenever he is in state ω (i.e., iK Aω ∈ ), then 
A is true in state ω (i.e., .Aω ∈ ) 

We can prove the following statements: 

 =iK Ω Ω  (1) 

 ( ) =i i iK A B K A K B∩ ∩  (2) 

 i iA B K A K B⊆ ⇒ ⊆  (3) 

 iK A A⊆  (4) 

 =i i iK K A K A  (5) 

 i i iK K A K A¬ ¬ ⊆  (6) 

The properties of (1)–(6) are considered fundamental for defining knowledge 
operators in epistemic logic. 

Nevertheless, we can define the possibility operator Pi(ω) and the common 
knowledge operator Ki as the greatest fixed points as well, i.e. as coinductive sets. In 
this way, we cannot prove Aumann’s agreement theorem. Instead, we prove the reflec-
tion disagreement theorem as an appropriate negation of Aumann’s theorem. While 
for Aumann’s theorem we need the property ( ) = { : },i iA K Aω ω ∈P ∩  for its negation 

we need the property ( ) = { : }.i iA K Aω ω ∈P ∪  In other words, this new statement can 
be proven if we change some of the standard philosophical presuppositions in game 
theory for the following new assumptions: each rational agent can cheat (disagree in 
his heart with) other rational agents, no player can know everything prior to the game, 
each agent can try to foresee knowledge (beliefs) of his/her opponents and manipulate 
them, therefore common knowledge does not mean that an agent will agree with or be 
completely predictable to all others. 

These philosophical presuppositions contradicting Aumann’s ideas were first 
formulated by Lefebvre in his notion “reflexive games” in 1965 [25, 27, 28]. A game 
is called reflexive if when choosing an action an agent has to model (predict) the 
actions of his/her opponents [33, 34], e.g. (s)he can try to manipulate them or cheat 
them. In the earliest of these articles, Lefebvre formulated reflexive games assuming 
many reflexion levels [28]. At the zero level I ignore beliefs of opponents, at the first 
level I take into account their beliefs, at the second level I take into account that they 
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try to predict my beliefs, at the third level I foresee their beliefs in which my beliefs 
are foreseen by them, etc. The gametheoretic mathematics for the early ideas of 
Lefebvre has been devoloped by Novikov and Chkhirtishvili [11–14, 33, 34]. The 
reflexion disagreement theorem that will be proved in the next section holds true for 
their approach, namely when we consider reflexive games at a reflexion level of any 
natural number. I am inspired and influenced by the early ideas of Lefebvre in the 
same measure as them. 

The later work of Lefebvre tried to simulate decision making in reflexive games 
by means of Boolean functions [26]. The main disadvantages of these approaches lie 
in the fact that reflexive levels are ignored and agents are presented as automata. 
However, an individual’s assessment of a situation is variable. Reflexion varies de-
pending on characteristic moods (illocutionary acts), as well as the persuasiveness and 
emotionality of our interlocutors (perlocutionary effects). In this sense, the dynamism 
of reflexion quite corresponds to the well-known paradox of Chevalley and Belzung 
[10], which is formulated as such: the emotional response of a given person in a given 
situation can vary at different points of time. Thus, the simulation of decision making 
in reflexive games by means of Boolean functions is too speculative and cannot help 
in analyzing everyday situations. Using this approach, we assume that the reactions 
and evaluations of a given agent remain the same forever. Nevertheless, this is false. 
This approach can be useful only in explaining some basic features of reflexive man-
agement that take place in a given situation (such as the case of Soviet and American 
ethical patterns [26]). 

The early ideas of Lefebvre, which I try to develop in this paper, are very close to 
the idea of a metagame which was proposed by Nigel Howard [17]. According to him, 
for any game G and any player i there can be a metagame iG, in which player i 
chooses in full knowledge of the choices made by all the others. More formally, let  
G = 〈S1, S2; M1, M2〉 be the normal form of the game, where S1 (S2) is the set of strate-
gies for player 1 (2) and M1 (M2) is his/her preference function. The set of outcomes is 
S = S1 × S2, i.e. an outcome is an ordered pair s = 〈s1, s2〉. Mi(s) = {s' : is not preferred 
to s by player i}, i = 1, 2. Let B(S1) (B(S2)) be the set of non-null subsets of S1 (S2) and 
K1 ⊆ B(S1) (K2 ⊆ B(S2)). Then the first level metagame KG is defined as the normal 
form KG = 〈X1, X2; 1 2,M M′ ′ 〉 , where X1 = {x1 : x1 = 〈 f1, c1〉; c1 ∈ K1; f1 : K2 → c1},  
X2 = {x2 : x2 = 〈 f2, c2〉; c2 ∈ K2; f2 : K1 → c2}, and for i = 1, 2, 1M ′ satisfies the follow-
ing property: 

( )' iff ( )i ix M x x M xβ β′ ′ ′∈ ∈  

where β( f1, c1; f2, c2) = ( f1(c2), f2(c1)). 
By induction, we can obtain the nth-level metagame KnK(n–1) ... K1G. The set of all 

metagames KnK(n–1) ... K1G for any natural number n is called the infinite metagame 
based on G. This metagame corresponds to Lefebvre’s reflexive game of infinite level. 
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Nigel Howard proposed to use metagames to have the possibility of requiring 
“more of rationality than that each player should optimize given its beliefs about the 
others’ choices” [17]. Now (s)he should be able “to know the others’ choices, and 
know how the other would choose to react to such knowledge, and know each others’ 
reactions to such reactions, and so on” [17]. These ideas are almost the same as the 
ideas introduced in reflexive games [11–14, 33, 34]. The difference lies in other ways 
of defining preference functions. 

The reflection disagreement theorem holds true for the infinite metagame in How-
ard’s meaning, as well as for the reflexive game of infinite level in Lefebvre’s mean-
ing. This theorem shows limits in infinite mutual predictions of others’ knowledge. 

The mathematical meaning of the reflexion disagreement theorem is that we 
cannot prove the agreement theorem using probabilities running over streams (e.g. 
using probabilities with values on hypernumbers or p-adic numbers) in any way. In 
non-standard fields Aumann’s theorem is false, because the powerset of any infinite 
set of streams is not a Boolean algebra and Bayes’ theorem does not hold in general 
for streams [41, 46, 47]. Notice that we cannot avoid streams in the case of an infi-
nite metagame or reflexive game of infinite level, because we face there an infinite 
data structure consisting of streams. Fuzzy and probability logic with values on 
streams is described in [41–47]. This logic can be used for developing a probability the-
ory and epistemic logic for infinite metagames and reflexive games of infinite level. 

Mathematically, an infinite metagame is a coalgebra [18, 32, 36, 39]. Graphically, 
coalgebras (e.g. processes or games) can be represented as infinite trees. As an exam-
ple, let us refer to the following definition of binary trees labeled by x, y, … and 
whose interior nodes are either unary nodes labeled by u1, u2, … or binary nodes la-
beled by b1, b2, …: 

1. the variables x, y, … are trees, 
2. if t is a tree, then adding a single node labeled by one of u1, u2, … as a new root 

with t as its only subtree gives a tree, 
3. if s and t are trees, then adding a single node labeled by one of b1, b2, … as new 

root with s as the left subtree and t as the right subtree again gives a tree, 
4. trees may go on forever (i.e. trees satisfy the greatest fixed point condition). 
This definition allows us to define some binary trees by circular definitions such as: 

 b1    u1 

s =   t =

 t s    t 

to sum up, we obtain the following infinite binary tree: 
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b1  

 

u1 b1 

u1 u1 b1 

… … … …

Let Tr be the set of trees that we have defined. Then our definition introduces 
a coalgebra: 

Tr = {x, y, …} ∪ ({u1, u2, …} × Tr) ∪ ({b1, b2, …} × Tr × Tr) 

The reflection disagreement theorem is valid for games presented in the form of 
a coalgebra. Recently, many researchers [5, 24, 29, 53] have focused on the idea that 
in economics, in particular in decision theory, we cannot avoid coalgebraic notions 
such as process dynamics, behavioral instability, self-reference, or circularity. There 
exist many more cases of non-equilibria in economics, because we engage coinductive 
databases more often as a matter of fact [5, 16]. For example, repeated games may be 
defined only coalgebraically [1, 30] and, as well, it is better to define epistemic games 
and belief functors as coalgebras [6–9]. 

Thus, the reflexion disagreement theorem can be proved if (1) we assume that ra-
tional agents can become unpredictable to and try to manipulate each other, (2) we 
define probabilities on streams (e.g. on hypernumbers or p-adic numbers), (3) games 
are presented as coalgebras. As we see, this new theorem is a very important statement 
within the new mathematics (coalgebras, transition systems, process calculi, etc.) 
which has been introduced into game theory recently. Sets of streams which have been 
modelled coalgebraically cannot generate inductive sets [2]. Therefore, Aumann’s 
agreement theorem is meaningless on these sets, but we face just sets of streams in 
many kinds of games (e.g. if we deal with repeated games, games with infinite states, 
concurrent games, infinite metagames, reflexive games of infinite level, etc.). Instead 
of the agreement theorem, the reflexion disagreement theorem is valid if we cannot 
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obtain inductive sets, e.g. in the case of sets of streams. Notice that according to Aczel 
[2], the universum of coinductive sets is much larger than the universum of inductive 
sets. 

3. Reflexion disagreement theorem 

Let A be any set. We define the set Aω  of all streams over A as 
= { :{0,1, 2, ...} }.A Aω σ →  For more details on stream calculus, see [15, 35, 38–40]. 

For a stream σ, we call σ(0), the initial value of σ. We define the derivative σ′(0) of 
a stream σ, for all n ≥ 0, by σ ′(n) = σ(n + 1). For any n ≥ 0, σ(n) is called the nth ele-
ment of σ. This can also be expressed in terms of higher-order stream derivatives, 
defined, for all k ≥ 0, by σ (0) = σ , σ(k+1) = (σ(k))′. In this case, the nth element of 
a stream σ is given by σ(n) = σ(n)(0). Also, the stream can be understood as an infinite 
sequence of derivatives. It will be denoted by an infinite sequence of values or by an 
infinite tuple: 

 = (0) :: (1) :: (2) :: :: ( 1) :: ...nσ σ σ σ σ −…   

 = (0), (1), (2),σ σ σ σ〈 〉…   

A bisimulation on Aω is a relation R A Aω ω⊆ ×  such that, for all σ and τ  in Aω, if 
, Rσ τ〈 〉 ∈  then (i) (0) = (0)σ τ  and (ii) , .Rσ τ′ ′〈 〉 ∈  
Theorem 1 (coinduction). For all σ, τ ∈ Aω, if there exists a bisimulation relation 

R A Aω ω⊆ ×  with , ,Rσ τ〈 〉 ∈  then σ = τ. This principle is called coinduction. 
The repeated stream at each step is denoted by [σ(0)] or by [a]. We can define the 

addition and multiplication of streams as follows. The sum σ+ τ and the product σ ×τ 
of streams σ and τ are defined element-wise: 

, ( )( ) = ( ) ( )n n n nσ τ σ τ∀ ∈ + +N  

=0
, ( )( ) = ( ) ( )

n

k
n n k n kσ τ σ τ∀ ∈ × −∑N  

To define addition and multiplication by coinduction, we should use the following 
facts about the differentiation of sums and products by applying the basic operations: 
(σ + τ)′ = σ′ + τ′, (σ × τ)′ = (|σ(0)|× τ′) + (σ′× τ), where | (0) | = (0), 0, 0, 0, ... .σ σ〈 〉 We 
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see that the sum behaves exactly as in classical calculus. However, multiplication does 
not. Now we can define them, as well as two other stream operations as follows: 

 
 Differential equation   Initial value   Name  

 ( ) =σ τ σ τ′ ′ ′+ +   ( )(0) = (0) (0)σ τ σ τ+ +   sum  

( ) = (| (0) | ) ( )σ τ σ τ σ τ′ ′ ′× × + ×   ( )(0) = (0) (0)σ τ σ τ× ×   product  

1 1 1( ) = | 1| | (0) |σ σ σ σ− − −′ ′− × × ×    1 1( )(0) = (0)σ σ− −    inverse  

 
We can embed the set of real numbers into the set of streams by defining the fol-

lowing constant stream. Let .r ∈R  Then | |= , 0, 0, 0,r r〈 〉…  is defined so that: its dif-
ferential equation is | | = [0]r ′ , its initial value is | | (0) = .r r  This allows us to add and 
multiply real numbers and streams: 

| | = (0), (1), (2),r rσ σ σ σ+ 〈 + 〉…  

| | = (0), (1), (2),r r r rσ σ σ σ× 〈 〉…  

Taking into account these equalities, we are able to rely on our intuition that it 
would be natural to define any positive real number of [0, 1]  to be less than any posi-
tive inconstant stream of [0,1]ω , e.g. |1| is less than [1] and |r + 1| is less than [r]. 

Consider the set of streams [0,1]ω  and extend the standard order structure on [0,1]  
to a partial order structure on [0,1] .ω  Further define this order as follows: 

[ ]0,1 ωO  (1) for any streams , [0, 1] ,ωσ τ ∈  we set σ τ≤  if ( ) ( )n nσ τ≤  for every 

.n∈N For any streams , [0,1] ,ωσ τ ∈  we set =σ τ  if σ, τ are bisimilar. For any 
streams , [0,1] ,ωσ τ ∈ we set <σ τ  if ( ) ( )n nσ τ≤  for every n∈N  and there exists n0 
such that 0 0( ) ( ).n nσ τ≠  (2) each stream of the form | | [0,1]r ω∈  (i.e. constant stream) 
is less than an inconstant stream σ. 

This ordering relation is not linear, but partial, because there exist streams 
, [0,1] ,ωσ τ ∈ which are incomparible. 

We introduce two operations: sup, inf in the partial order structure 
[0,1]

.ωO  Assume 

that , [0,1]ωσ τ ∈  are either both constant streams or both inconstant streams. Then their 
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supremum and infimum are defined by coinduction: the differential equation for the su-
premum is  

(sup( , )) = sup( , )σ τ σ τ′ ′ ′  

and its initial value is 

(sup( , ))(0) = sup( (0), (0))σ τ σ τ   

the differential equation for the infimum is 

 (inf ( , )) = inf ( , )σ τ σ τ′ ′ ′   

and its initial value is 

(inf ( , ))(0) = inf ( (0), (0))σ τ σ τ   

Suppose now that one and only one of , [0,1]ωσ τ ∈  is constant, then an incon-
stant stream is greater than a constant one, therefore their supremum gives an incon-
stant stream, but their infimum gives a constant stream. 

According to [0,1]
,ωO  there exist the maximal stream [1] [0,1]ω∈  and the minimal 

stream [0] = | 0 | [0,1] .ω∈ Each p-adic number has a unique expansion 

=
= ,k

kk N
n pα+∞

−∑ where {0, 1, , 1}k pα ∈ −… , ,k∀ ∈ Z and 0Nα− ≠ that is called the 

canonical expansion of the p-adic number n (or the p-adic expansion for n). p-adic 
numbers can be identified with sequences of digits: 

2 1 0 1= , Nn α α α α α− −… …  

or with infinite tuples: 

2 1 0 1 2= , , , , , , ,Nn α α α α α α− − −〈 〉… …  

The set of such numbers is denoted by .pQ  
The expansion 

0 1
=0

= =k k
k k

k
n p p pα α α α

∞

+ + + + ∑… …  

where {0, 1, , 1},k pα ∈ −…  ,k∀ ∈ N is called the expansion of the p-adic integer n.  
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This number sometimes has the following notation: 3 2 1 0=n α α α α…  or 

0 1 2 3= , , , , .n α α α α〈 〉…  The set of such numbers is denoted by .pZ  
It can be easily shown that p-adic numbers may be represented as potentially 

infinite data structures such as streams. Each stream of the form 

= (0) :: (1) :: (2) :: :: ( 1) :: ...nσ σ σ σ σ −…  

where ( ) {0,1, , 1}n pσ ∈ −…  for every ,n ∈ N may be converted into a p-adic integer. 
It is easily shown that the set Aω of all p-adic streams includes the set of natural num-

bers. Let n be a natural number. It has a finite p-adic expansion 
0

= .
m

k
k

k
n pα

=
∑ Thus we can 

identify n with a p-adic stream ( 1)= (0) :: (1) :: :: ( ) :: ,mmσ σ σ σ σ +… where ( ) = iiσ α  for 

= 0,i m  and ( 1) = [0].mσ +  
Extend the standard order structure on N to a partial order structure on p-adic 

streams (i.e. on Zp). 
• for any p-adic streams σ, τ ∈N  we have σ τ≤  in N iff σ τ≤  in Zp, 
• each p-adic stream ( 1)= (0) :: (1) :: :: ( ) :: ,mmσ σ σ σ σ +… where ( 1) = [0]mσ +  (i.e. 

each finite natural number), is less than any infinite numberτ, i.e. σ < τ for any σ ∈ N 
and \ .pτ ∈ Z N  

Define this partial order structure on Zp as follows: 

pZO  Let 

( )= (0) :: (1) :: :: ( 1) :: nnσ σ σ σ σ−…   

and  
( )= (0) :: (1) :: :: ( 1) :: nnτ τ τ τ τ−…   

be p-adic streams. (1) We set σ < τ if the following three conditions hold: (i) there 
exists n such that ( ) < ( ),n nσ τ  (ii) ( ) ( )k kσ τ≤  for all k > n, (iii) σ is a finite integer, 
i.e. there exists m such that σ(m) = [0]. (2) We set =σ τ  if σ and τ are bisimilar (see 
Theorem 1). (3) Suppose that σ, τ are infinite integers. We set σ ≤ τ by coinduction: 
σ ≤ τ iff ( ) ( )n nσ τ≤  for every .n∈N We set <σ τ  if we have σ τ≤  and there exists 

0n ∈N  such that 0 0( ) < ( ).n nσ τ  
The ordering relation 

pZO  is not linear but partial, because there exist p-adic streams 

, ,pσ τ ∈ Z which are incomparible. As an example, let p = 2 and let σ represents the  
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p-adic integer 1 = 10101 101
3

− … …  and τ the p-adic integer 2 = 01010 010
3

− … … . Then 

the p-adic streams σ and τ are incomparible. 
Now we introduce two operations sup, inf in the partial order structure on Zp. Suppose 

that the p-adic streams σ, τ represent infinite p-adic integers. Then their sup and inf may 
be defined by coinduction as follows: the differential equation for the supremum is 
(sup( , )) = sup( , )σ τ σ τ′ ′ ′  and its initial value is (sup( , ))(0) = sup( (0), (0)),σ τ σ τ the 
differential equation for the infimum is (inf ( , )) = inf ( , )σ τ σ τ′ ′ ′  and its initial value is 
(inf ( , ))(0) = inf ( (0), (0)).σ τ σ τ Now suppose that at most one of two streams σ, τ 
represents a finite p-adic integer. In this case, sup( , ) =σ τ τ  if and only if σ τ≤  under 
condition 

pZO  and inf ( , ) =σ τ σ  if and only if σ τ≤  under condition .
pZO  

It is important to remark that there exists the maximal p-adic stream max pN ∈Z  

under condition .
pZO  It is easy to see that: 

max = [ 1] = 1= ( 1) ( 1) ( 1) kN p p p p p p− − − + − + + − +… …  

Now, using the given notion of streams, let us prove the reflexion disagreement 
theorem. For Ω, the finite set of possible states of the world, and N, the set of agents, 
we can unconventionally define agent i’s accepted performances as a function Qi 
which assigns to each o Ω∈  a non-empty subset of Ω, so that each world o belongs to 
one or more elements of each Qi, i.e. Ω is contained in the union of the Qi, but the Qi 
are not mutually disjoint. Thus Qi(o) is called i’s accepted performative state at o. If 
the successful performance is o, the individual knows (accepts) that the performative 
state is in Qi(o). The elements of Qi(o) are those states of the world that are considered 
to be types of situations for performative states making the latter successful at o. 

We can propose a stream interpretation of Qi(o) and construct Ω ω. We know that 
the set Ω ω is much larger than Ω. According to the orders 

[0,1]ω
O  and ,

pZO  we can 

identify all members of Ω with some streams of Ω ω. Let the set of these streams be 
denoted by δΩ. Evidently, δΩ .ωΩ⊂ Assume that Ω ω is a union of .iQ  Therefore, iQ  
contains δΩ (and hence by assumption Ω). 

Now let us define probabilities on streams as follows: a finitely additive probabil-
ity measure is a nonnegative set function P(⋅) defined on the sets A ⊆ Ω ω, into the set 
[0, 1]ω, and satisfying the following properties: 

(i) P(∅) ≥ |0| for all A ⊆ Ωω, 
(ii) P(Ω ω) = [1] and P(∅) = |0|, 
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(iii) If A ⊆ Ω ω and B ⊆ Ω ω are disjoint, i.e. inf(P(A), P(B)) = |0|, then P(A ∪ B)  
= P(A) + P(B). Otherwise, P(A ∪ B) = P(A) + P(B) – inf(P(A), P(B)) = sup(P(A), P(B)). 

(iv) P(¬A) = [1] – P(A) for all A ⊆ Ω ω, where ¬A = Ω ω\ A. 
(v) Relative probability functions P(A|B) ∈ [0, 1]ω are characterized by the follow-

ing constraint: 

 ( )( | ) =
( )

P A BP A B
P B

∩  (7) 

where P(B) ≠ |0| and P(A ∩ B) = inf(P(A), P(B)). Note that since there are no partitions 
of sets of streams in the general case [41, 47], there are also some problems in defining 
the conditional relation P(A|B) between events. There are many more dependent events 
than in the usual σ-field. For example, any real number in [0, 1] is less than any incon-
stant stream in [0, 1]ω. Let P(B) = a, P(A) = b, where a is a number in [0, 1] and b is an 
inconstant stream in [0, 1]ω. Then according to [0, 1]

,ωO P(A|B) = 1. However, this case 

cannot be defined using the traditional condition for independence P(B) = P(B|A). In-
stead of this, we use the following condition: P(A)P(B) = inf(P(A), P(B)). 

The main originality of such probabilities is that conditions (iii), (iv) are inde-
pendent. As a result, in some probability spaces 〈Ω ω, P〉 the Bayes formulas may not 
hold [41, 47] and Aumann’s theorem cannot be proven. 

A particular case of stream-valued probabilities is presented by p-adic probabili-
ties. Let us define them on any subsets of Ω ω as follows: a finitely additive probability 
measure is a set function P(⋅) defined for sets A ⊆ Ω ω, into the set Zp and satisfying 
the following properties: 

(i′) P(Ω ω) = –1 and P(∅) = 0. 
(ii′) If A ⊆ Ω ω and B ⊆ Ω ω are disjoint, i.e. inf(P(A), P(B)) = 0, then P(A ∪ B)  

= P(A) + P(B). Otherwise, P(A ∪ B) = P(A) + P(B) – inf(P(A), P(B)) = sup(P(A), P(B)). 
Let us illustrate this property using 7-adic probabilities. Let P(A) = … 323241 and  
P(B) = …354322 in 7-adic metrics. Then P(A) + P(B) = ...010563, inf(P(A), P(B)) = 
…323221; P(A) + P(B) – inf(P(A), P(B)) = sup(P(A), P(B)) = …354342. 

(iii′) P(¬A) = –1 – P(A) for all A ⊆ Ω ω, where ¬A = Ω ω\ A. 
(iv′) Relative probability functions P(A|B) ∈ Zp are characterized by the following 

constraint: 

( )( | ) =
( )

P A BP A B
P B

∩  

where P(B) ≠ 0 and P(A ∩ B) = inf(P(A), P(B)). 
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Now we can interpret (| |),i oQ where | | ,o σΩ∈ probabilistically as follows: 
(| |) = { : ( | | |) > [0]}.i io P oτ τQ These relative probabilities cannot determine a partition 

of Ω ω. In other words, using them we cannot define an equivalence relation corre-
sponding to a partition. Instead of this the following properties hold, as we can prove 
on the basis of the orders 

[0,1]ω
O  and 

pZO : 

• If ( | ) > [0]iP τ π , then ( | ) > [0]iP ρ π  and ( | ) > [0].iP τ ρ  This property holds in-
stead of the usual transitivity in real probability logic: if ( | ) > 0iP ρ π  and 

( | ) > 0,iP τ ρ  then ( | ) > 0.iP τ π  
• ( || |) =|1|,iP τ ω  where | | σω Ω∈  and \ .ω στ Ω Ω∈  
• ( | ) > [0].iP τ τ  
Thus, the possibility operator iQ  has the following properties: for all , :ωτ π Ω∈  

 ( )iτ τ∈Q  (8) 

 ( ) ( ) = ( )i i iπ τ π τ∈ ⇒Q Q Q  (9) 

Now we consider the relation ( ),iA o⊆ Q  where ,A σΩ⊆ as the statement that at o 
agent i accepts the performance A, i.e. | |o A∈  for all states | |υ  that i considers possi-
ble at | |:o  

 = {| | : (| |)}i iK A o A o⊆ Q  (10) 

This set is another interpretation of the knowledge operator which is coinductive 
now. If (| |),iA o⊆ Q  an individual i who observes | |,o will accept a state of the per-
formance A. The most important property of the knowledge operator is ,iA K A⊆  i.e. 
if A is successful in state | |o  (i.e. | |o A∈ ), then an agent accepts the performance A in 
state | |o  (i.e. | | io K A∈ ). 

The following statements can be proved in relation to the coinductive knowledge 
operator defined in (10): 

 iKσ σ ωΩ Ω Ω⊆ ⊆  (11) 

 ( ) ( )i i iK A K B K A B∩ ⇒ ∩  (12) 

 ( ) ( )i i iK A B K A K B∪ ⇒ ∪  (13) 
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 ( ) = ( )i i iK A B K A K B∪ ∩  (14) 

 i iA B K A K B⊆ ⇒ ⊆  (15) 

 iA K A⊆  (16) 

 =i i iK K A K A  (17) 

We can compare Aumann’s statements (1)–(6) with statements (11)–(17) to notice 
that the latter assume a new epistemic logic with a stream interpretation. For example, 
it is possible to build up a kind of multi-valued illocutionary logic [50–52], where 
streams are values for perlocutionary effects. So, the coinductive knowledge operator 
Ki of (11)–(17) designates perlocutionary effects of illocutionary acts, i.e. it just takes 
into account successful performative propositions (it defines what influence was made 
on the hearer’s behavior). Let KjA (KiA) denote agent j’s (i’s) performative (cognitive 
or emotional) assessments of the state of affairs A with the expected perlocutionary 
effect of these assessments on agent j (i). So, KjA means j + performative verb + A 
(e.g. j thinks A, j likes A, j hates A, etc.) and agent j follows this statement in his (her) 
behavior. 

Based on the standard propositional language L on the set of values [0, 1] (or  
{0, 1, …, p – 1}), we can construct an extension L′′ containing new modal operators 
E, E1, E2, E3 said to be perlocutionary effects. The semantics of L′′ is defined in the 
following way. Assume that V is a valuation of well-formed formulas of L and it takes 
values in [0, 1] (or {0, 1, …, p – 1}). Let us extend V to Ve as follows: 

A) If for ϕ ∈ L, V(ϕ) = r, then Ve(Ei(ϕ)) = 〈σ(0) = r, σ(1), σ(2), …〉, i.e. Ve(Ei(ϕ)) 
is a mapping from V(ϕ) to an inconstant stream σ starting with V(ϕ). 

B) If for ϕ ∈ L, V(ϕ) = r, then Ve(ϕ) = |r|. 
C) For all ϕ ∈ L, Ve(Ei(–ϕ)) ≤ Ve(–Ei(ϕ)). 
D) For all ϕ, ψ ∈ L, Ve(Ei(ϕ) ∧ Ve(Ei(ψ)) = inf(Ve(Ei(ϕ), Ve(Ei(ψ))), Ve(Ei(ϕ) 

∨ Ve(Ei(ψ)) = sup(Ve(Ei(ϕ), Ve(Ei(ψ))), Ve(Ei(ϕ) ⇒ Ve(Ei(ψ)) = [1] – sup(Ve(Ei(ϕ), 
Ve(Ei(ψ))) + Ve(Ei(ψ)) for streams and Ve(Ei(ϕ) ⇒ Ve(Ei(ψ)) = [p – 1] – sup(Ve(Ei(ϕ), 
Ve(Ei(ψ))) + Ve(Ei(ψ)) for p-adic integers,Ve(–Ei(ϕ)) = [1] –Ve(Ei(ϕ)) for streams and 
Ve(–Ei(ϕ)) = [p – 1] – Ve(Ei(ϕ)) for p-adic integers. 

Using these semantics, the following propositions will be perlocutionary tautolo- 
gies, i.e. they will be true: 

 ( )ϕ ϕ⇒ E  (18) 

 ( )ϕ ϕ¬ ⇒ ¬E  (19) 
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 ( ) ( )ϕ ϕ¬ ⇒ ¬E E  (20) 

 ( ( ) ( )) ( )ϕ ψ ϕ ψ∧ ⇒ ∧E E E  (21) 

 ( ) ( ( ) ( ))ϕ ψ ϕ ψ∨ ⇒ ∨E E E  (22) 

 ( ( )) ( ( ) ( ))ϕ ψ ϕ ψ⇒ ⇒ ⇒E E E  (23) 

The epistemic logic closed under tautologies (18)–(23) is a kind of many-valued 
logic with values in the set of non-Archimedean numbers [41, 43–45, 48]. 

Aumann’s understanding of common knowledge satisfies the classical intuition 
of the inductive behavior of all logical entities, i.e. the presupposition that we can 
appeal only to inductive sets in our reasoning. For example, we can always find an 
infinite intersection according to the knowledge operators of different people. 
However, this intuition contradicts the possibility of reflexive games where I can 
cheat or make false public announcements and should detect whether I am cheated 
by other people. 

Under the conditions of reflexive games, I cannot define common perlocutionary 
effects as the infinite intersection .Aκ  An infinite mutual reflexion between two 
individuals assumes an infinite union: both have mutual knowledge of A or both 
know that both know A or both know that both know that both know A etc. ad infini-
tum. In other words, the common perlocutionary operator KA  is defined as follows: 

1 2 1 2 2 1 1 2 1=KA K A K A K K A K K A K K K A∪ ∪ ∪ ∪ ∪…  

For each natural number n an operator nM  expressing nth degree mutual reflex-
ion for perlocutionary effects is defined as follows: 

0 1
=1

= , =
N

n i n
i

M A A M A K M A+ ∪  

The common perlocutionary effect κ is understood as the mutual reflexion of per-
locutionary effects of all finite degrees: 

=0
= n

n
A M Aκ

+∞

∪  
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Also, let us define for each natural number n an operator nM  expressing nth de-
gree mutual reflexion: 

0 1
=1

= , =
N

n i n
i

M A A M A K M A+ ∩  

and common knowledge, κ, as the mutual reflexion of common knowledge of all finite 
degrees: 

=0
= n

n
A M Aκ

+∞

∩  

Lemma 1. If | | ,o Aκ∈  then for any i, (| |)iA oκ ⊆ Q  and if | | ,o Aκ∈  then for 

some i, (| |).iA oκ ⊆ Q  
Proof. If | | ,o Aκ∈  then | | i no K M A∈  for all agents i and degrees n of the mutual 

reflexion of common knowledge. Therefore, (| |)iA oκ ⊆ Q  for any i. If | | ,o Aκ∈  then 
| | i no K M A∈  for some agent i and degree n of the mutual reflexion of perlocutionary 

effects. Therefore, (| |)n iM A o⊆ Q  for some n, and thus (| |)iA oκ ⊆ Q  for some i. 
Q.E.D. 

Theorem 2 (reflexion disagreement theorem). Let us consider a hypothesis H in 
coinductive probability logic [46, 47] for which the various agents’ coinductive prob-
abilities are 1, , Nq q…  after they condition ( )P ⋅  on priors. The propositions C and 
C  of coinductive probability logic are defined as follows: 

=1
= {| |: ( | (| |)) = }

N

i i
i

C o P H o qQ∩  

=1
= {| |: ( | ( )) = }

N

i i
i

C o P H qωQ∪  

Let the coinductive probability space , PωΩ〈 〉  be closed under all of the opera-

tors ,iK ,nM ,κ  ,iK ,nM  and κ  and let P be the standard probability measure that is 

common to all the agents. Assume that the probability of C and C  becoming common 
knowledge or common perlocution is not equal to zero, i.e. ( ) [0]P Cκ ≠  and 

( ) [0],P Cκ ≠ then 
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( | ) for some iP H C q iκ ≠  

( | )  for some iP H C q iκ ≠  

Proof: By lemma 1, = ,ij
j

C Dκ ∪ where ij
j

D∪  covers Qi but is not a partition of Qi 

because of the basic properties of coinductive probabilities. Thus 

 

inf ( ( ), ( ))sup( )
( | ) = =

( ) ( )sup

( | ) ( ) ( )
= =

( ) ( )

ijij
j j

ij ij
j j

ij ij i ij
j j

i
ij ij

j j

P H P DP H D
P H C

P D P D

P H D P D q P D
q

P D P D

κ
∩

≠
∑ ∑

∑ ∑

∪

∪

  

Thus, ( | ) iP H C qκ ≠  in general. In the same way we can show that ( | ) iP H C qκ ≠  
in general. Q.E.D. 

4. Cellular-automatic reflexive games 

The reflexion disagreement theorem is valid for games presented in coalgebraic 
form. There are many kinds of such games: repeated, concurrent, etc. In this section, 
a new way of presentating a game in coalgebraic form will be proposed on the basis of 
prooftheoretic cellular automata [49]. These automata can be used in formulating con-
text-based decision rules in games. Usually, payoff matrices are involved in represent-
ing databases of games, (see Fig. 1). However, in the case of coinductive databases, 
we cannot appeal to payoff matrices. For example, we cannot appeal to them if we are 
dealing with games limited by certain contexts or with infinite games. Some kinds of 
coinductive databases for making decisions could be presented by payoff cellular 
automata. These automata are constructed as follows: The cells of the automata belong 
to the set Zd and they take their values in S. The set S of states consists of the payoffs 
for all n players. The cardinality, ⎪S⎪, is equal to i1i2…in, where ij is the number of all 
pure strategies available to the jth player, j = 1, …, n. Each state has the form of an n-
tuple 〈aij…k, bij…k, …, cij…k〉, where 

(1) aij…k is the payoff to player 1 when (1) he plays ai (2) player 2 plays bj, …, (n) 
player n plays ck, 
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(2) bij…k is the payoff to player 2 when (1) player 1 plays ai (2) player 2 plays bj, 
…, (n) and player n plays ck, etc., 

… 
(n) cij…k is the payoff to player n when (1) player 1 plays ai (2) player 2 plays bj, 

…, (n) and player n plays ck. 
 

  Player 1 
  a1 a2
 b1 〈a11, b11〉 〈a21, b21〉 

Player 2    
 b2 〈a12, b12〉 〈a22, b22〉 
    

Fig. 1. An example of a payoff matrix showing the possible  
strategies available to player 1 (a1 and a2)  

and player 2 (b1 and b2) and the payoff that each player  
receives for his choice, depending on what other players do.  

The payoff is in the form 〈aij,bij〉, where aij is the payoff to player 1  
when he plays ai and player 2 plays bj and bij  

is the payoff to player 2 when he plays bj and player 2 plays ai 

The local transition function, δj, for player j, where j = 1, …, n, is presented by 
a decision rule based on the past payoffs of all the players. The rule δj can be the same 
for all the players or different. The initial configuration of a payoff cellular automaton 
is a set of premises which, together with the decision rule, fully determines the future 
behaviour of the automaton. These premises may be understood as players’ assump-
tions regarding the the expected payoff vector for different contexts before the game. 
The game context is defined by the neighbourhood N(z) of the cell z. The number of 
premises (payoff vectors that we can take into account) cannot exceed the number  
n = ⎪N(z) ∪ z⎪. The decision rule δj is a mapping from the set of premises for N(z) ∪ z 
to a conclusion. This rule generates the sequence a0(z), a1(z), …, at(z), … for any  
z ∈ Zd, where a = 〈aij…k, bij…k, …, cij…k〉 and ai(z) denotes the state of z at the ith step of 
the application of δj to a0(z), the state of z at step 0. This sequence is called a deriva-
tion trace from an initial state a0(z). Obviously, this sequence is an infinite stream. 

Example 1 (saddle point) 

Let us consider a simple payoff cellular automaton for the zero-sum game with 
two players, 1 and 2. Let aij be the payoff of player 1 when the ith strategy of player 1 
and jth strategy of player 2 are played. If maxi minj aij = minj maxi aij for z ∪ N(z) at 
step t, then aij is called a saddle point for z at time t. Thus, a saddle point is an element 
of the payoff cellular automaton at time t which is both a maximum of the minimums 
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of each row within the neighborhood N(z) and a minimum of the maximums of each 
column within the same neighborhood. The cells z ∪ N(z) may have no saddle points, 
one saddle point, or multiple saddle points. Let the payoff states pictured in Table 1 be 
the initial configuration of the automaton. The set S of states consists of the integers  
–5, –4, –3, …, 7, 8. 

Table 1. Initial configuration of a payoff cellular automaton A  
with the neighborhood consisting of 8 members  
in 2-dimensional space and with players 1 and 2 

8 2 3 2 3 
–3 0 2 –5 –4 
–2 –1 6 –1 8 
4 1 9 2 4 
5 –2 3 0 2 

 
The local transition function is defined as follows: 

( ) ( ) ( )
( )

1 , if max , , ,  are saddle points of 
 

otherwise
ij ij kl mn kl mnt
t

a a a a a a N z
z

z
+ ⎧ =⎪= ⎨

⎪⎩
a

a
 

At time t = 1, the configuration of Table 1 the following form: 

Table 2. Values for A given in Fig. 2 at t = 1 

2 2 2 2 2 
2 2 2 2 2 
1 1 1 2 2 
1 1 1 2 2 
1 1 1 2 2 

 
Now let us define reflexive games within payoff cellular automata. Denote the re-

flexive players by 1 and 2. Let A, a state of affairs, be identified with a set of payoffs 
within a game context (i.e. within a neighborhood). In other words, let A〈aij, bij〉 be a set 
of payoffs at the point z ∈ Zd consisting of all the payoffs in N(z) ∪ z, where z has 
state 〈aij, bij〉, see Table 3. 

Table 3. The initial configuration of a payoff cellular automaton  
with the neighbourhood consisting of 8 members  
in 2-dimensional space and with players 1 and 2 

 〈3,3〉 〈12,−12〉 〈13,−15〉 
〈−12,12〉 〈−5,−5〉 〈−2,−2〉 
〈−1,1〉 〈0,−6〉 〈2,−3〉 
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The configuration shown in Table 3 presents 9 states of affairs:  

A 3, 3  = { 3, 3 , 12, −12 , −12, 12 , −5, −5 } 

A 12, −12  = { 3, 3 , 12, −12 , 13, −15 , −12, 12 , −5, −5 , −2, −2 } 

A 13, −15  = { 12, −12 , 13, −15 , −5, −5 , −2, −2 }, 

 A −12, 12  = { 3, 3 , 12, −12 , −12, 12 , −5, −5 , −1, 1 , 0,−6 }, ... 

Let 1
1B A〈aij, bij〉 (accordingly, 2

1B A〈aij, bij〉) denote agent 1’s (accordingly, agent 2’s) 
Boolean superpositions of 1’s payoffs of A〈aij, bij〉 (accordingly, 2’s payoffs) for each 
first (accordingly, second) projection of all the points of A〈aij, bij〉. Then K1A〈aij, bij〉 = A〈aij, bij〉  
∪ 1

1B A〈aij, bij〉 and K2A〈aij, bij〉 = A〈aij, bij〉 ∪ 2
1B A〈aij, bij〉. Let 1

2B A〈aij, bij〉 (accordingly, 2
2B A〈aij, bij〉) 

denote agent 1’s (accordingly, agent 2’s) Boolean superpositions of 1
1B A〈aij, bij〉 and 2

1B
A〈aij, bij〉 for each first (accordingly, second) projection of all the points of A〈aij, bij〉. 
Then K1K2A〈aij, bij〉 = A〈aij, bij〉 ∪ 2

1B A〈aij, bij〉 ∪ 1
2B A〈aij, bij〉 and K2K1A〈aij, bij〉  

= A〈aij, bij〉 ∪ 1
1B  A〈aij, bij〉 ∪ 2

2B A〈aij, bij〉. Let 1
3B A〈aij, bij〉 (accordingly, 2

3B A〈aij, bij〉) denote 
agent 1’s (accordingly, agent 2’s) Boolean superpositions of 1

2B A〈aij, bij〉 and 2
2B A〈aij, bij〉 

for each first (accordingly, second) projection of all the points of A〈aij, bij〉. Then 
K2K1K2A〈aij, bij〉 = A〈aij, bij〉 ∪ 2

1B A〈aij, bij〉 ∪ 1
2B A〈aij, bij〉 ∪ 2

3B A〈aij, bij〉 and K1K2K1A〈aij, bij〉  
= A〈aij, bij〉 ∪ 1

1B A〈aij, bij〉 ∪ 2
2B A〈aij, bij〉 ∪ 1

3B A〈aij, bij〉, and so on. 

Example 2 (reflexive game of the second level) 

Let us consider the payoff cellular automaton in Table 3 where the set S of states con-
sists of all pairs , ,t t

ij ija b〈 〉  where ,t t
ij ija b  at time = 0,1, 2,t …  are integers in [–15, 13]  

and the local transition function is as follows: 1 1 1( ) = , ,t t t
ij ija z a b+ + +〈 〉  where 1 = ((t t

ij m
m

a b+ ∨  

) ( ))t t t
k ij ij

k
a a b⇒ ∧ ∧∨  and 1 = ( )t t t

ij k m
k m

b b a+ ⇒∨ ∨  and ,t
k

k
a∨  t

m
m

b∨  are the maximal pay-

offs of player 1 and player 2, respectively from a cell in ( )N z z∪  at time t, the logical 
operations are understood thus: := 13 max( , )a b a b b⇒ − + , := max( , ).a b a b∨  
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This automaton simulates a reflexive game, where player 1 is at the second level 
of reflexion, while player 2 is at the first level of reflexion. Its evolution at time t = 1 
is shown in Table 4. 

Table 4. The configuration of the payoff  
cellular automaton of figure 4 at t = 1 

〈3, 13〉 〈–12, 13〉  〈–15, 13〉  
〈–12, 13〉  〈–5, 13〉  〈–2, 13〉  
〈–1, 1〉  〈–6, 3 〉  〈–3, 13〉  

 
Reflexion by agent i at the nth level in bimatrix games is expressed by (n + 1) or-

der knowledge operators 1 = ,n
i i j iK A K K K A+ … where on the right hand side there are 

(n + 1) Km operators (m = i, j). Let us consider two agents i and j and suppose that the 
reflexive game takes place at the level n. This means that we have 1n

iK A+  and/or 
1n

jK A+  which are understood as the perlocutionary effects of illocutionary acts and 

satisfy requirements (12)–(17). We know that 1n n
j iA K A K A+⊆ ⊆ ⊆…  and 

1 .n n
i jA K A K A+⊆ ⊆ ⊆…  Therefore, 1 1 .n n

i jK A K A+ +∩ ≠ ∅  

The payoff of a reflexive game at the nth level in accordance with 1n
iK A+  or 

1n
jK A+  is called a performative equilibrium of this game. 

We have the following possibilities: 
• both 1n

iK A+  and 1n
jK A+  are a performative equilibrium. This means that both 

agents i and j are on the same nth level of reflexion, simultaneously, 
• only 1n

iK A+  is a performative equilibrium (then we can take 1 =n n
j jK A K A+ )  

– this means that agent i is at the nth level of reflexion, but agent j is at the (n – 1)th 
level of reflexion, 

• only 1n
jK A+  is a performative equilibrium (then we can take 1 =n n

i iK A K A+ ). 
This means that agent j is at the nth level of reflexion, but agent i is at the (n – 1)th 
level of reflexion. 

In a reflexive game at level n for agent i, it is important that 1 ,n n
i jK A K A+⊆  i.e. 

that agent i really is at the level n. Choosing an appropriate level of reflexion n may 
mean victory in a game. 

Now let us define 1n
iK A+  on p-adic probabilities. Assume we have p ∈ N  reflex-

ive players i, j. Then all possible combinations 
1 0

,
n

K K K Aα α α… where { , , },k i jα ∈ …  

can be presented by finite p-adic integers 



A. SCHUMANN 92

2 1 0
=0

00 =
n

k
n k

k

pβ β β β β∑… …  

where {0, , 1}k pβ ∈ −…  for each = 0, ,k n…  and there is a bijection between the sets 
{0, , 1}p −…  and { , , }.i j …  

Let Ω be a finite set of possible states of the world and .A Ω⊆  Then a finite  
p-adic probability measure 1n

iP +  is defined on the sets ,A B Ω⊆  as follows: 

1 1( ) = 0 and ( ) =1n n
i iP P Ω+ +∅  

1if ( ) > 0, then ( ) > 0n n
j iP A P A+  

1( ) > 0 iff ( ) > 0n n
i iP A P A+  

1if ( ) =1, then ( ) =1n n
j iP A P A+  

1 1=0 =0

=0 =0

( ) = and ( ) =
( 1) ( 1)

n n
k k

k k
n nk k

i in n
k k

k k

p p
P A P B

p p p p

α β
+ +

− −

∑ ∑

∑ ∑
 

where ,kα {0, , 1}k pβ ∈ −…  for each = 0, , ,k n…  

1 1 1 1 1( ) = ( ) ( ) = , ( ) =1 ( )n n n n n
i i i i iP A B P A P B if A B P A P A+ + + + +∪ + ∩ ∅ ¬ −  

=0 =01

=0

inf ,
( ) =

n n
k k

k k
k kn

i n
k

k
k

p p
P A B

p

α β

β

+

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

∑
 

where inf is defined digit by digit. For instance, if we have just two agents, then at the 
zero level of reflexion we have only two probability values: either 0 or 1 (meaning, 
e.g. that an agent either does not follow the content A Ω⊆  or does). At the first level 
of reflexion we already have the following four probability values: 0, 1/3, 2/3, 1 
(meaning, e.g. that neither agent follows the content ,A Ω⊆  one of them does not 
follow, another does, and both of them follow), etc. 
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Now we can define 1n
iK A+  in the following way: 

{ }{ }1 1= : ( ) = : ( | ) > 0n n
i i iK A A a P aω ω ω+ +⊆ Q  

Note that according to this definition, taking into account our assumption that if 
( | ) > 0,n

jP a ω  then 1( | ) > 0,n
iP a ω+  we have 1n n

j iK A K A+⊆  for each agent j participat-
ing in the reflexive game. 

Let us suppose that there are just three reflexive players k, l, m at the reflexion level n 
= 2. Then 2( ) {0,1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8,1}iP A Ω⊆ ∈  for each { , , }.i k l m∈  At 
the infinite level of reflexion, we have the following p-adic probabilities: 

( ) = ( )lim n
i i

n
P A P A∞

→∞
 

The knowledge operators 1n
iK A+  satisfy the following relations: 

1 1 1( ) ( )n n n
i i iK A K B K A B+ + +∩ ⇒ ∩  

1 1 1( ) ( )n n n
i i iK A B K A K B+ + +∪ ⇒ ∪  

1 1 1( ) = ( )n n n
i i iK A B K A K B+ + +∪ ∩  

1 1n n
i iA B K A K B+ +⊆ ⇒ ⊆  

1n
iA K A+⊆  

1 =n n n
i i iK K A K A+  

Using (finite) p-adic probabilities, we understand reflexion levels discretely. 
Therefore, between n and n + 1 there are no other reflexive levels. For any finite num-
ber of agents we can always define a reflexive level n such that probabilities are dis-
tributed on an appropriate finite set of p-adic numbers. The larger n (or the larger the 
number of reflexive agents), the more finite p-adic probabilities. 

5. Conclusion 

The reflexion disagreement theorem opens the door to new mathematics in game 
theory and decision theory, in particular it shows that it has sense to use stream 
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calculus, non-Archimedean mathematics, and p-adic analysis. Within this 
mathematics, we can formalize reflexive games of different reflexive levels (up to the 
infinite reflexive level). These results can be implemented in new mathematical tools 
of behavioral finance. 
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