EXCHANGE OF GOODS WHILE INVESTING INTO PRODUCTION AND SAFETY

The tradeoff between production and safety investment is scrutinized for two agents who convert resources into production and safety investment while simultaneously exchanging goods voluntarily. We quantify how two Cobb–Douglas parameters, one scaling production versus safety, and the other scaling the relative importance of two goods, impact two agents’ production, safety effort, incomes, export, import, price, and utilities. An agent’s income from producing a good reaches a maximum for an intermediate value of the Cobb–Douglas parameter that scales the importance of productive effort relative to safety effort. The price of good 2 in terms of good 1, and the agents’ utilities depend on both the Cobb–Douglas parameters, the productivity parameter, and both agents’ resources and unit costs of production and safety effort.

Keywords: production, safety, exchange, risk, trade, price

1. Introduction

Safety risk has not received much attention in the economics literature**. Safety concerns are often considered as constraints imposed by law and regulations. Firms face risks due to internal factors related to production, equipment failure, human failure, due to interaction with other firms within the industry, or external factors. The latter can be societal changes in general, or targeted action such as crime, theft, espionage, hacking, blackmail, terrorism. Asche and Aven [5] argue that safety measures

have a value in an economic sense, and consider for one firm the business incentives for investing into safety. Similarly, Viscusi [25] considers market incentives for safety.

Recent changes in US accounting laws have made CEOs liable to legal malpractice if accounting information is found to be fraudulent. This has caused a certain panic among firms as to whether they should invest more in information assurance technologies, given that an increase in such investments could lead to a decrease in firms’ productivity. Firms, most of which have finite resource constraints, are thus naturally led to determine optimal investments in information assurance technologies versus production technologies. The former can be perceived as investment to reduce the risk of legal malpractice. This paper intends to understand the factors that influence the tradeoff between safety and productive investment during exchange.

Many industries suffer from incorrect allocations between production and safety, often blinded by complexity. Often the decision is as simple as increasing the allocation to safety from 10% to 30%, or lowering it from 60% to 40% if initially too high. To reflect this basic simplicity, we build a simple model that focuses on which factors impact this crucial allocation. The analysis is presented as straightforwardly as possible.

Classical exchange theory was developed by Smith [21] and Ricardo [17]. More recent accounts are Allen [1], Arrow et al. [4], Hausken and Moxnes [10, 11], Taylor [23]. Recently, exchange theory and conflict have been merged, accounting for production and fighting, see Anderton [2], Anderton et al. [3], Bowles and Gintis [6], Hausken [9], Rider [18], Skaperdas and Syropoulos [20]. The paper makes one step further accounting for safety investment in an exchange model.

2. The model

Each agent \(i\) can produce one good \(i\), but also attaches utility to another good \(j\), \(i, j = 1, 2, i \neq j\). Agent \(i\) has a resource \(R_i\) (e.g. a capital good, or labor) which can be converted with unit conversion cost \(a_i\) into productive effort \(E_i\), and with unit cost \(b_i\) into safety effort \(S_i\), where

\[
R_i = a_i E_i + b_i S_i \quad \Rightarrow \quad S_i = \frac{R_i - a_i E_i}{b_i} \quad (1)
\]

The production cost coefficient \(a_i\), where \(1/a_i\) is the productive efficiency, measures the resources required to maintain the agent and machinery he uses in production. Analogously, \(1/b_i\) is the safety efficiency. The different unit costs \(a_i\) and \(b_i\) reflect how productive effort and safety effort have different weights, denominations, and are dif-
ferent in nature, thus ensuring that the two equations signs in Eq. (1) are valid. As a practical aid it may be convenient to think of good \(i\) as a consumption good such as oil, and the resource \(R_i\) as a capital good such as oil drilling equipment. Alternatively, the product may be a consumption good such as fish, and the resource \(R_i\) a capital good such as fishing nets. The productive effort \(E_i\) is designed to generate good \(i\), i.e. extract income from resources currently employed. Without risk, the production function for good \(i\) or income \(Y_i\) takes the simple form \(Y_i = E_i^h\), where \(h\) is the productivity parameter, with no need for safety effort [12]. An example is production of potatoes in a stable climate with proven conditions and manual labor with minimal technology where risk is negligible and safety effort can be largely ignored. In contrast, with unstable conditions and high reliance on uncertain technology where many unforeseen adverse consequences may follow, investment in safety is required. Examples are protective gear including, e.g. helmets for manual workers on construction sites, blowout preventers in the oil industry, alternative exit routes and food rations for miners. In such conditions, no safety investment causes substantial losses such as costly head injuries, costly blowouts, costs associated with stranded miners who may die before getting rescued, legal costs, and reputation loss. To reflect how production depends jointly on productive effort and safety effort in a risky environment, we model the income as

\[
Y_i = \left(E_i^{\beta_i} S_i^{1-\beta_i} \right)^{\frac{h}{\beta_i}}, \quad \beta_i \in (0, 1)
\]

where \(\beta_i\) is a parameter that scales the importance of productive effort relative to safety effort. The parameters \(\beta_i\) and \(h\) can be interpreted as parameters, reflecting deterministic investments in production and safety facing a risky environment, or \(\beta_i\) and \(h\) can be interpreted as stochastic random variables to incorporate added uncertainty into the optimal investment choices into production and safety. \(\beta_i = 1\) means no safety effort. As \(\beta_i\) decreases from 1, safety effort gains increased importance, and the agent faces a tradeoff between \(E_i\) and \(S_i\). \(\beta_i = 0\) means no productive effort.

Agent 1 exports an amount \(X_1\) of good 1 to agent 2 in exchange for an amount \(X_2\) in return. The agents have equivalent Cobb–Douglas preferences for the two goods, with utilities

\[
U_1 = \left(Y_1 - X_1 \right)^{\alpha} X_2^{1-\alpha}, \quad U_2 = X_1^{\alpha} \left(Y_2 - X_2 \right)^{1-\alpha}, \quad X_1 = P_2 X_2, \quad \alpha \in (0, 1)
\]

where \(\alpha\) is the relative preference parameter for good 1 for both agents, and \(P_2\) is an interior terms-of-exchange price denoting the price of good 2 in terms of good 1. The parameter \(\alpha\) can alternatively be interpreted as a random variable to reflect preference fluctuations for the two goods.
3. Analysis of the model

To determine the first order conditions, we let agent 1 choose E_1 and X_1, and agent 2 choose E_2 and X_2, simultaneously and independently, to maximize utility. This gives

$$\frac{\partial U_i}{\partial E_i} = 0 \implies E_i = \frac{R_i \beta_i}{a_i}, \quad S_i = \frac{R_i (1 - \beta_i)}{b_i} \quad Y_i = \left[\left(\frac{R_i \beta_i}{a_i} \right)^{\beta_i} \left(\frac{R_i (1 - \beta_i)}{b_i} \right)^{1-\beta_i} \right]^h$$ \tag{4}

Proposition 1. The productive effort E_i increases in the resource R_i and in β_i, and decreases in the unit cost a_i of production. Proof follows from (4).

Proposition 2. The safety effort S_i increases in the resource R_i, and decreases in β_i and in the unit cost b_i of safety effort. Proof follows from Eq. (4).

Proposition 3. The income Y_i increases in the resource R_i, decreases in both unit costs a_i and b_i, and reaches maximum for an intermediate β_i. Proof follows from Eq. (4).

We next substitute $X_2 = P_2^{-1} X_1$ into the first equation in (3) and differentiate U_1 with respect to X_1, and thereafter substitute $X_1 = P_2 X_2$ into the second equation in (3) and differentiate U_2 with respect to X_2. This gives

$$\frac{\partial U_1}{\partial X_1} = 0 \implies X_1 = Y_1 (1 - \alpha), \quad \frac{\partial U_2}{\partial X_2} = 0 \implies X_2 = Y_2 \alpha$$ \tag{5}

Proposition 4. Agent 1’s export of good 1 to agent 2 equals agent 1’s income multiplied by one minus the Cobb–Douglas preference parameter for good 1 for both agents. Agent 2’s export of good 2 to agent 1 equals agent 2’s income multiplied by the Cobb–Douglas preference parameter for good 1 for both agents. Proof follows from Eq. (5).

To determine the market equilibrium condition, substituting Eq. (5) into Eq. (3) gives the price equation

$$P_2 = \frac{X_1}{X_2} = \frac{Y_1 (1 - \alpha)}{Y_2 \alpha} = \frac{\left(\left(\frac{R_1 \beta_1}{a_1} \right)^{\beta_i} \left(\frac{R_1 (1 - \beta_i)}{b_1} \right)^{1-\beta_i} \right)^h}{\left(\left(\frac{R_2 \beta_2}{a_2} \right)^{\beta_2} \left(\frac{R_2 (1 - \beta_2)}{b_2} \right)^{1-\beta_2} \right)^h} \left(\frac{1}{\alpha} \right)$$ \tag{6}
Proposition 5. The price of good 2 in terms of good 1 equals agent 1’s export divided by agent 2’s export, which depends on both the Cobb–Douglas parameters, the productivity parameter, and both agents’ resources and unit costs of production and safety effort. Proof follows from Eq. (6).

The price P_2 of good 2 in terms of good 1 is determined endogenously on a supply-demand basis. When agent 1 acquires more resources (R_1 increases), he produces more (Y_1 increases), exports more (X_1 increases), and the price $P_2 = X_1/X_2$ increases. Conversely, when the relative preference parameter α for good 1 increases so that both agents attach higher utility to good 1 than to good 2, the demand for good 1 increases, causing a lower price P_2 of the less valuable good 2 in terms of the more valuable good 1. Substituting (5) into (3) gives the utilities

$$U_1 = Y_1^\alpha Y_2^{1-\alpha} = \left[\left(\frac{R_1^\beta}{a_1} \right)^{\beta_1} \left(\frac{R_1(1-\beta_1)}{b_1} \right)^{1-\beta_1} \right]^{\alpha h} \times \left[\left(\frac{R_2^\beta}{a_2} \right)^{\beta_2} \left(\frac{R_2(1-\beta_2)}{b_2} \right)^{1-\beta_2} \right]^{(1-\alpha)h}$$

$$U_2 = Y_1^\alpha Y_2^{1-\alpha}(1-\alpha) = \left[\left(\frac{R_1^\beta}{a_1} \right)^{\beta_1} \left(\frac{R_1(1-\beta_1)}{b_1} \right)^{1-\beta_1} \right]^{\alpha h} \times \left[\left(\frac{R_2^\beta}{a_2} \right)^{\beta_2} \left(\frac{R_2(1-\beta_2)}{b_2} \right)^{1-\beta_2} \right]^{(1-\alpha)h}$$

Proposition 6. Both agents’ utilities depend on $Y_1^\alpha Y_2^{1-\alpha}$ which is agent 1’s income from producing good i raised to the Cobb–Douglas preference parameter α for good 1 for both agents, multiplied with agent 2’s income from producing good i raised to one minus the Cobb–Douglas preference parameter for good 1 for both agents. Multiplying $Y_1^\alpha Y_2^{1-\alpha}$ with α gives agent 1’s utility. Multiplying $Y_1^\alpha Y_2^{1-\alpha}$ with $1-\alpha$ gives agent 2’s utility. The two utilities depend on both the Cobb–Douglas parameters, the productivity parameter, and both agents’ resources and unit costs of production and safety effort. Proof follows from (7).

4. Conclusion

The paper quantifies how two Cobb–Douglas parameters, one scaling production versus safety, and the other scaling the relative importance of two goods, impact two
agents’ production, safety effort, incomes, export, import, price, and utilities. Using Cobb–Douglas preferences for production versus safety effort, we show how two agents strike a balance between converting resources into production and safety while simultaneously exchanging two goods voluntarily. First, and intuitively, both productive effort and safety effort increase in the agents’ resources and decrease in the respective unit costs of these efforts. Second, and also intuitively, productive effort increases in the Cobb–Douglas parameter that scales the importance of productive effort relative to safety effort, while safety effort decreases in this parameter. Third, an agent’s income from producing a good reaches a maximum for an intermediate value of this Cobb–Douglas parameter. Fourth, agent 1’s export of good 1 to agent 2 equals agent 1’s income multiplied by one minus the Cobb–Douglas preference parameter for good 1 for both agents. Agent 2’s export of good 2 to agent 1 equals agent 2’s income multiplied by this Cobb–Douglas parameter. The two agents’ exports determine the price of good 2 in terms of good 1. Fifth, the price of good 2 in terms of good 1 equals agent 1’s export divided by agent 2’s export, which depends on both the Cobb–Douglas parameters, the productivity parameter, and both agents’ resources and unit costs of production and safety effort. Sixth, we show how the agent’s utilities depend on their incomes from producing the two goods and their Cobb–Douglas preference parameter for good 1, which also depend on both the Cobb–Douglas parameters, the productivity parameter, and both agents’ resources and unit costs of production and safety effort.

References

Exchange of goods while investing into production and safety

