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ESTIMATORS OF THE RELATIONS OF EQUIVALENCE,  
TOLERANCE AND PREFERENCE BASED ON  

PAIRWISE COMPARISONS WITH RANDOM ERRORS 

This paper presents a review of results of the author in the area of estimation of the relations of 
equivalence, tolerance and preference within a finite set based on multiple, independent (in a stochas-
tic way) pairwise comparisons with random errors, in binary and multivalent forms. These estimators 
require weaker assumptions than those used in the literature on the subject. Estimates of the relations 
are obtained based on solutions to problems from discrete optimization. They allow application of 
both types of comparisons – binary and multivalent (this fact relates to the tolerance and preference 
relations). The estimates can be verified in a statistical way; in particular, it is possible to verify the 
type of the relation. The estimates have been applied by the author to problems regarding forecasting, 
financial engineering and bio-cybernetics. 
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1. Introduction 

Estimation of the relations of (i) preference (an alternative of the equivalence rela-
tion, i.e. reflexive, transitive, symmetric, and strict preference relation, i.e. transitive, 
asymmetric), (ii) tolerance (reflexive, symmetric) and (iii) equivalence, within a finite 
set is applied to the ranking and classification of items – non-overlapping or overlap-
ping – based on multiple pairwise comparisons with random errors. The necessity of 
determining such relations often appears in research on systems, especially in: finan-
cial engineering, prediction and biocybernetics. Many methods and algorithms, based 
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on different methodological ideas, have been developed for these purposes. They are 
investigated as problems in mathematical statistics, cluster analysis, computational 
intelligence, rough sets, data mining and other fields (e.g. [6, 7, 11–15, 39, 40, 47]). 
Some of the methods and algorithms are based on heuristic ideas and, therefore, have 
weak formal properties. The methods which have good properties usually require 
strong assumptions about pairwise comparisons. The verification of such assumptions 
is not always possible (e.g. [2–4, 7, 8, 11]).  

In terms of theory and practice, a desirable feature of methods of determining such 
relations is the conjunction of weak assumptions about errors in comparisons and good 
statistical properties of estimators. The purpose of this paper is to present methods of 
estimation and verification of the relations developed by the author which have such 
good theoretical and practical features. The approach used is general and homogene-
ous with the possibility of fully automating computations. 

The method developed is based on the concept of nearest adjoining order (NAO), 
formulated by Slater [42] and developed by other authors (see [5, 6] and  [7] Chap. 2). 
The concept of NAO estimators is consistent with the general idea of statistical esti-
mation – to determine the form of the relation which exhibits the minimum difference 
to the data, i.e. comparisons. Very often, a set of comparisons is not a statistical sam-
ple because individual comparisons can have non-identical distributions and may be 
not independent.  

The estimates are obtained based on solutions to discrete programming problems. 
Algorithms for solving such problems are presented in the literature (e.g. [7, 11, 13]). 

This method can be applied in many areas – it is sufficient to be able to compare 
pairs of elements, with a random error. In particular, the comparisons can be made by 
statistical tests, experts or computer procedures for comparisons. The elements com-
pared can be: random samples, empirical functions, faces, etc. (see e.g. [21, 24]). The 
author has recently applied such estimators in research concerning public debt optimi-
zation [34] – together with other procedures, e.g. Kohonen neuronal networks.  

Problems of the form of estimating relations (classification, partitioning – over-
lapping or non-overlapping, ranking, etc.) appear constantly in the literature on the 
subject – monographs, articles, conference papers. The number of publications is huge 
– an exhaustive review of classical papers is presented in the monographs cited above; 
new results appear in various journals, e.g. Psychometrika, Journal of Classification 
and Journal of Marketing Research.  

The paper consists of seven sections. The second section presents the main ideas 
of estimation and validation. The third section presents essential results concerning the 
form of the estimators and their properties. In the fourth section conclusions from 
a simulation experiment are discussed. The fifth and sixth sections briefly present 
methods of validating the estimates and algorithms for solving optimization problems. 
The last section discusses some original results (see the book by Klukowski [35]). 
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2. The idea of estimation and validation 

The general idea of NAO estimators can be stated as follows: The relations under 
consideration can be expressed in the form of a family of subsets ( )**

1 , ..., ,nχ χ AA n > 1, 
(the index A  denotes the relation type: p relates to the preference relation, τ  – the 
tolerance relation, e – the equivalence relation), from a finite set X = {x1, ..., xm}, 
(m ≥ 3). In the case of the preference relation, the family generates a sequence of sub-
sets (the index of a subset is the rank of its elements). Pairwise comparisons 

( )( , )i jk x xgυ
A  ( { , }, 1, ..., )b k Nυ μ∈ = are given for each pair of elements (xi, xj) ∈ X × X 

(the index υ denotes the kind of comparison, b – binary, μ – multivalent). Any com-
parison determines the appropriate relation for a pair (xi, xj) with the possibility of 
a random error. The kind of comparison (binary or multivalent) results from the pro-
cedure used (statistical test, expert, neuronal network). For example, in the case of the 
equivalence relation a comparison states whether two elements belong to the same 
subset ( )( ( , ) 0)p

bk i jg x x =  or to different subsets ( )( ( , ) 1).p
bk i jg x x =  A multivalent com-

parison can express, in the case of the preference relation, the difference between 
ranks (a distance within a ranking). 

Any relation ( )**
1 , ..., nχ χ AA can be expressed by the values (of a function) 

( )( , )i jx xT υ
A  which takes the values from the same set as the comparisons. The differ-

ence ( ) ( )( , ) ( , )p p
i j i jk x x T x xg υυ −  expresses the random error in a comparison (a differ-

ence equal to zero means errorless comparison). 
The assumptions made about the stochastic properties of the errors in comparisons 

are non-restrictive. In the case of binary comparisons, it is assumed that the probabil-
ity of correct comparison is greater than the probability of an error in comparison. In 
the case of multivalent comparisons, it is assumed that the probability (density) func-
tion of errors in comparisons is unimodal with mode and median equal to zero. Addi-
tionally, in the case of multiple comparisons (N > 1) of a pair, it is assumed that the 
individual comparisons ( )( , )i jk x xgυ

A ( 1, ..., ; , )= 〈 〉∈ mk N i j R  are stochastically inde-
pendent. Thus, the expected values of errors in comparisons can be different from zero 
and comparisons of pairs including the same element (e.g. ( , ),i jx x ( , ),j kx x ( , ))i kx x  can 
be dependent. Moreover, the distributions of errors can be unknown. 

Determination of an estimate of the relation ( )* ( )*
1 , ..., nχ χA A  is equivalent to finding the 

form of the relation with minimum difference to comparisons ( )( , )υ
p

i jkg x x  
( , , 1, ..., ).〈 〉∈ =mi j k NR The estimate is obtained based on optimum solution to 
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a problem from discrete optimization. The simplest form of such a problem, formulat-
ed by Slater (for N = 1), is equivalent to finding a Hamilton path in a graph [7]. 

A wide range of generalizations of the Slater formulation, developed by the au-
thor, has been presented in [35]. Two kinds of estimators and two kinds of compari-
sons are examined for each relation (the equivalence relation is an exception – only 
binary comparisons are considered). The first estimator is based on minimizing the 
sum of absolute differences between comparisons and the form of the relation (ex-
pressed by the function ( )( , )).i jx xT υ

A  The other estimator is based on the medians from 
the comparisons of each pair.  

The statistical properties of the estimators have been derived (the majority of these 
are proved in earlier papers of the author). Consistency is a fundamental statistical 
property. In the case of the preference relation, a simulation experiment has been car-
ried out, which shows the precision of the estimators investigated.  

The results of the estimation can be thoroughly verified with the use of statistical 
tests. Investigating the properties of some tests requires carrying out simulations [35]. 
Such procedures allow, in particular, to test the existence of a relation (under the alter-
native hypothesis – absence of such a relation, randomness of data, some other data 
structure, etc.). Thus, the results of estimation, positively validated, are reliable and 
valuable.  

3. The form of estimators and their properties 

3.1. Assumptions about errors in comparisons 

An equivalence relation R(e) (reflexive, transitive, symmetric), tolerance relation 
R(t) (reflexive, symmetric), or preference relation R(p) (alternative to the equivalence 
relation together with the strict preference relation) is defined for the set X. Each rela-
tion generates some family of subsets ( )* ( )*

1 , ..., nχ χA A  ( { , , }; 2).p e nτ∈ ≥A  

The equivalence relation generates a family ( )* ( )*
1 , ...,e e

nχ χ  with the following 
properties: 

 ( )*

1

n
e

q
q

χ
=

= X∪  (1) 

 ( )* ( )*e e
r sχ χ∩ = {0} (2) 
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where: 

 ( )*

the empty set

, ,  equivalent elementse
i j r i jx x x xχ

−

∈ ≡ −

0
 (3) 

 non-equivalent elements for srji ≠≠ ,   

 ( )* ( )*( ) ( ) ,e e
i j i jr sx x x xχ χ∈ ∩ ∈ ≡   (4) 

The tolerance relation generates a family ( )* ( )*
1 , ..., n
τ τχ χ  with the property (1), i.e. 

( )*

1
,

n

q
q

τχ
=

= X∪ and the properties: 

( )* ( )*, ( ) such that { }r sr s r s τ τχ χ∃ ≠ ∩ ≠ 0 ,  

 ( )*, ,i j i jrx x x xτχ∈ ≡ −  equivalent elements (5) 

( )* ( )*( ) ( ) ,i j i jr sx x x xτ τχ χ∈ ∩ ∈ ≡   

 non-equivalent elements for i j≠  and ( )* ( )*( , )i j r sx x τ τχ χ∉ ∩  (6) 

each subset ( )* (1 )r r nτχ ≤ ≤  includes an element xi such that 

  ( )* ( )i s s rx τχ∉ ≠  (7) 

The preference relation generates a family ( )* ( )*
1 , ...,p p

nχ χ  with the properties 
(1), (2) and the property: 

 ( )* ( )*( ) ( )p p
i jr sx xχ χ∈ ∩ ∈ ≡ xi  is preferred to xj for r < s (8) 

The relations defined by the conditions (1)–(8) can be expressed alternatively by 
the values (functions) ( )( , )i jx xTυ

A  (( , ) ;i jx x ∈ ×X X  { , , },p e τ∈A  { , });bυ μ∈ the sym-
bols b and μ denote binary and multivalent comparisons, respectively, defined as fol-
lows: 

 
( )*

( ) 0 if there exists such that ( , )( , )
1 otherwise

χ⎧ ∈= ⎨
⎩

e
e i j r

i jb
r x xx xT   (9) 
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• Assuming binary comparisons, the function ( )( , ),e
i jb x xT describing the equiva-

lence relation, expresses whether a pair (xi, xj) belongs to a common subset or not 

 ( )* ( )*( )

0 if there exists , ( not excluded) such that
( , ) ( , )

1 otherwise

τ ττ χ χ
=⎧

⎪= ∈ ∩⎨
⎪⎩

i j i jb r s

r s r s
x x x xT  (10) 

• Assuming binary comparisons, the function ( )( , )i jb x xT τ , describing the tolerance 
relation, expresses whether a pair ( , )i jx x  belongs to any conjunction of subsets (or the 
same subset) or not; the condition (7) guarantees the uniqueness of the description 

 ( ) * *( , ) #( )i ji jx xT τ
μ Ω Ω= ∩  (11) 

where: *
lΩ  – a set of the form ( )** { }l l ss x τχΩ = ∈ , #( )Ξ  – the number of elements in 

the set .Ξ  
• Assuming multivalent comparisons, the function ( )( , ),i jx xT τ

μ describing the tol-
erance relation, expresses the number of subsets of conjunction including both ele-
ments; condition (7) guarantees the uniqueness of the description 

 

( )*

( )* ( )*( )

( )* ( )*

0 if there exists such that ( , )
( , ) 1 if , and

1 if , and

p
i j r

p pp
i j i jb r s

p p
i jr s

r x x
r sx x x xT
r sx x

χ
χ χ
χ χ

⎧ ∈
⎪

= − ∈ ∈ <⎨
⎪ ∈ ∈ >⎩

 (12) 

• Assuming binary comparisons, the function ( )( , ),p
i jb x xT describing the preference 

relation, expresses the direction of preference in a pair of elements or their equivalence 

 ( )* ( )*( )( , ) , ,p pp
i j ij i j ijr s r sx x d x x dT μ χ χ= ⇔ ∈ ∈ = −  (13) 

• Assuming multivalent comparisons, the function ( )( , ),p
i jx xT μ describing the pref-

erence relation, expresses the difference between the ranks of the elements xi and xj.  
The relation ( )* ( )*

1 , ..., nχ χA A  is to be estimated based on N (N ¥ 1) comparisons of 

each pair ( , )i jx x ∈ X μ X; any comparison ( )( , )i jkg x xυ
A  evaluates the actual value of 

( )( , )i jx xT υ
A  and can be perturbed by a random error. The following assumptions are 

made about the errors in comparisons: 
A1. The relation type, i.e.: equivalence, tolerance or preference, is known, the 

number of subsets n – unknown. 
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A2. Any comparison ( )( , )i jkg x xυ
A A( { , , };e pτ∈  υ { , };b μ∈  1, ..., ),k N= is 

an evaluation of the value ( )( , ),i jx xT υ
A perturbed by a random error. The probabilities 

of errors ( ) ( )( , ) ( , )i j i jkg x x x xT υυ −A A  have to satisfy the following assumptions: 

 

( ) ( ) ( ) ( )

( )

( ( , ) ( , ) 0 ( , ) ) 1
1{ 1, 0,1}, 0,
2

δκ

δκ

− = = ≥ −
⎛ ⎞⎛ ⎞∈ − ∈ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

A A A A

A

i j i j i jb b bijbk

bij

P g x x x x x xT T
 (14) 

 

( ) ( ) ( )

0

( ) ( )

( ( , ) ( , ) ( , )

1) ( {0, ..., }
2

i j i j i jk
r

ij ij

P rg x x x x x xT T

m

μ μμ

μ μκ κ

≤
− =∑

= > ∈ ±

A A A

A A
 (15) 

r – an integer number, 

( ) ( ) ( )( ) ( )

0

1( ( , ) ( , ) ( , ) ) ( {0, ..., }
2μ μ μ μμ κ κ

≥

− = − = > ∈ ±∑ A A AA A
ij iji j i j i jk

r
P r mg x x x x x xT T  (16) 

r – an integer number, 

 
( ) ( )( ) ( )

( ) ( )( )

( ( , ) ( , ) ) ( ( , ) ( , ) 1

( , ) ) ( {0, ..., }, 0)
μ μμ μ

μ μ μκ κ

− = ≥ − = +

= ∈ >

A AA A

A AA

i j i j i j i jk k

ij iji j

P r P rg gx x x x x x x xT T
m rx xT

 (17) 

 
( ) ( )( ) ( )

( ) ( )( )

( ( , ) ( , ) ) ( ( , ) ( , ) 1

( , ) ) ( {0, ..., }, 0)

μ μμ μ

μ μ μκ κ

− = ≥ − = −

= ∈ <

A AA A

A AA

i j i j i j i jk k

ij iji j

P r P rg gx x x x x x x xT T

m rx xT
 (18) 

A3. The comparisons ( )( , )i jkg x xυ
A  A( { , , }e pτ∈ ; υ { , };b μ∈  1, ..., )k N=  are in-

dependent random variables. 
Assumption A3 allows determination of the distributions of the errors in estima-

tion (see the next section). However, determination of the exact distributions of the 
(multidimensional) errors is complicated and, in practice, unrealizable in an analytic 
way. The main properties of the estimators, in particular their consistency, are valid 
without this assumption. 

Assumption A3 can be relaxed in the following way: the comparisons ( )( , )i jkg x xυ
A  

and ( )( , )r slg x xυ
A  ( ; , ; , ),l k r i j s i j≠ ≠ ≠ i.e. including different elements, have to be 

independent. 
In the case of the weak preference relation (i.e. including the possibility of equiva-

lent elements), condition (14) can be relaxed to the form (15), (16). 
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Assumptions A2, A3 reflect the following properties of the distributions of errors: 
• In the case of binary comparisons, the probability of correct comparison is great-

er than that of incorrect comparison (Inequality (14)). 
• Zero is a median of any distribution of the error in the comparison (Inequalities 

(14)–(16)), 
• Zero is a mode of any distribution of the error in comparison (Inequalities  

(14)–(18)). 
• The set of all comparisons consists of realizations of independent random varia-

bles. 
• The expected value of any error in the comparison may differ from zero. 
The assumptions about the distributions of errors in comparisons are not restric-

tive. In particular, the errors can have non-zero expected values; the distribution of 
errors in comparisons has only to satisfy the mode and median condition. These fea-
tures guarantee a broad spectrum of applications and protect against incorrect results. 

3.2. The form of estimators – the idea of minimization  
of the differences between comparisons and the form of the relation 

As mentioned above, two kinds of estimators have been examined – the first one 
based on the total sum of absolute differences between the form of the relation ex-
pressed by the values ( )( , )i jx xT υ

A  and comparisons, and the second, based on differ-
ences between the medians from comparisons of each pair. The properties of these 
estimators have been determined by the author based on probabilistic inequalities (in 
particular Hoeffding’s inequality [16] and Chebyshev’s inequality), properties of the 
sample median [6] and results indicating the convergence to zero of the variances of 
the random variables examined. 

The estimator based on the number of absolute differences, denoted by the symbol 
( ) ( )

ˆ1ˆ ˆ, ..., nχ χA A  (or ( )ˆ ( , ) , ),mi j i jx x RTυ ∈A  assumes the form of the solution (or solu-
tions) to the discrete optimization problem: 

 
( ) ( )( )
1

( ) ( )

, ..., , 1
( , ) ( , )min

r m

N

i j i jk
F i j kR

g x x t x xυυ
χ χ ∈ ∈ =

⎧ ⎫−⎨ ⎬
⎩ ⎭
∑ ∑

X
A AA

A A  (19) 

where: ( )F X
A  – the feasible set, i.e. all families ( ) ( )

1 , ..., rχ χA A  in the set X, ( )( , )i jt x xυ
A  

– a function describing the relation ( ) ( )
1{ , ..., },χ χA A

r mR  – a set of the form 

{ , 1 , ; }m i j i j m j iR = ≤ ≤ > (note that ( )( , )i jkg x xυ
A  denotes both the random variable 

and its realization). 
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In the case of the preference relation and binary comparisons, the following trans-
formation, which simplifies the optimization problem (19), can be applied: 

 
( ) ( )

( ) ( )
( ) ( )

0 if ( , ) ( , )
( ( , ) ( , ))

1 if ( , ) ( , )
i j i jk

i j i jk
i j i jk

g x x t x x
g x x t x x

g x x t x x

υυ
υυ

υυ

θ
⎧ =⎪− = ⎨

≠⎪⎩

A A
A A

A A
 (19a) 

After transformation (19a), the criterion function (19) expresses the number of in-
consistencies between comparisons and the values ( )( , );p

i jb x xT  he transformation re-
duces the number of variables in the problem and does not change the properties of the 
estimates [20, 22].  

The estimator ( ) ( )
1 , ..., rχ χA A� �  ( ( )( , ))i jx xT υ

A� based on the medians from the compari-
sons of individual pairs, is obtained based on the discrete optimization problem: 

 
( ) ( )
1

( , ) ( )

, ...,

min ( , ) ( , )
r

me
i j i j

F

g x x t x xυυ
χ χ ∈

−∑
X

A A

A A  (20) 

where: ( , )( , )me
i jg x xυ

A  – the median from comparisons ( ) ( )
,1{ ( , ), ..., ( , )}.i j i jNgx x x xg υυ
A A The 

binary transformation (19a) can also be applied in the case of the median estimator. 
The number of solutions, obtained based on optimization problems (19), (20) can 

exceed one. A unique estimate can be determined from this set of solutions in a ran-
dom way or as a result of validation (see Section 5). The minimum possible value of 
the criterion functions (19), (20) equals zero; such a value indicates a perfect goodness 
of fit (of the comparisons and the estimate obtained). This eliminates the necessity of 
validation (one exception is the case of multiple estimates).  

Assumptions A1–A3 enable inference about the distributions of errors in esti-
mates. Let us discuss firstly the estimator based on the criterion (19). For each relation 
type one can determine a finite set including all possible realizations of comparisons 

( )( , ),i jkg x xυ
A  ( { , , }, { , }, 1, ..., ;e p b k Nτ υ μ∈ ∈ =A , )mi j R∈  

and the probability of each realization. Therefore, the use of criterion (19) determines: 
the estimate, its probability and estimation error. The error has the form: 

( ) ( )ˆ{ ( , ) ( , ); , }mi j i j i jx x x xT RT υυ − ∈A A , i.e. it is a multidimensional random variable. 
Thus, the estimator has a distribution.  

The analysis of a multidimensional error is, in practice, unrealizable and it is sug-
gested to replace it with the one-dimension error: 

 ( )( ) ( )

,

ˆˆ ( , ) ( , )
m

i j i j
i j R

x x x xTT υυ υΔ
∈

= −∑ AA A  (21) 
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When the error ( )ˆ 0,υΔ =A this indicates an errorless estimate; low values of the er-
ror indicate an estimate near to the actual form of the relation. The distribution of the 
estimator based on medians is defined in a similar way. 

The distributions of estimators can also be determined in the case of comparisons 
which are dependent when the form of such dependence is known. Determining the 
distributions of the estimators in an analytic way, even when the distributions of the 
errors in comparisons are known, is difficult due to the complex form of the set of 
elementary events; therefore such distributions can be analyzed using simulations. 
Similar considerations are valid in the case of the estimator based on the medians from 
comparisons. 

3.3. Properties of estimators 

Analytical properties of the estimators established by the author have mainly an 
asymptotic character, i.e. they apply to the case N → ∞ . These properties guarantee 
a basic feature of the estimators – consistency. It is clear that errorless estimates can 
also be obtained for finite N with probability close to one, because the feasible set in 
the optimization problems (19), (20) is huge, but finite. In general, the precision of the 
estimates depends not only on N, but also on the distributions of the errors in compari-
son and certain features of the relation, e.g. the number of subsets n and the number of 
elements in each subset. There is also a difference in the precision level of the two 
estimators considered. 

The analytical properties of the estimators are based on the properties of the ran-
dom variables expressing the differences between pairwise comparisons and the form 
of the relation (values of ( )( , )).υ

A
i jx xT It has been proved that the random variables 

expressing these differences, i.e.: 

( )( )* ( )

, 1
( , ) ( , )

m

N

N i j i jk
i j kR

gW x x x xTυυ υ
∈ =

= −∑ ∑ AA A   

or 

( , )( , )* ( )

,

( , ) ( , )meme
N i j i j

i j Rm

gW x x x xTυυ υ
∈

= −∑ AA A   

have different properties to the variables  

( )( ) ( )

, 1
( , ) ( , )

m

N

i j i jN k
i j kR

g x x x xW Tυυ υ
∈ =

= −∑ ∑ AA A� �   
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and 

( , )( , ) ( )

,

( , ) ( , )meme
i j i jN

i j Rm

g x x x xW Tυυ υ
∈

= −∑ AA A� �  

expressing the differences between comparisons and any other relation. The differ-
ences defining these random variables are defined in the criterion functions (19), (20). 

The following main results have been obtained: 
I. The expected values of the random variables corresponding to the difference 

from the actual form of the relation are smaller than the expected values of the vari-
ables corresponding to the difference from any other relation, i.e. ( )*( )NE Wυ <A ( )( )NE Wυ

A�  
and ( , )*( )me

NE Wυ <A ( , )( ).me
NE W υ
A�  

II. The variances of the variables expressing the sum of differences between com-
parisons and the form of a relation, both the actual or any other relation, divided by the 
number of comparisons, N, converge to zero as N → ∞ , i.e. ( )*Var((1/ ) ) 0lim N

N
N W υ

→∞
=A  

and ( )Var((1/ ) ) 0.lim N
N

N W υ
→∞

=A�  

III. The variances of the variables expressing the sum of differences between the 
medians from comparisons of each pair and the form of the relation converge to zero 
as ,N → ∞  i.e. ( , )*Var( ) 0,lim me

N
N

W υ
→∞

=A  ( , )Var( ) 0.lim me
N

N
W υ

→∞
=A�  

IV. The probability of the event that the (random) variable expressing the sum of 
differences between comparisons and the actual form of the relation takes a smaller 
value than the variable expressing the sum of differences between comparisons and 
any other form of relation converges to one as ;N → ∞  the speed of convergence, as 
determined by the coefficient of N in the corresponding exponential function, guaran-
tees the good efficiency of the estimator i.e.: 

 ( )( )*( ) 1 exp{ 2 }N NP NW Wυ υ θ< ≥ − −AA �   (22) 

θ – a positive constant. 
In the case of binary comparisons we have: 

 
2

( , )( , )* 1 1( ) 1 exp 2 { , , ), 0,
2 2

meme
bN bNP N e pW W δ τ δ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎛ ⎞< ≥ − − − ∈ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎝ ⎠
AA � A  (23) 

V. The probability of the event that the variable expressing the sum of differences 
between medians from comparisons and the actual form of the relation takes a lower 
value than the variable expressing the sum of differences between comparisons and 
any other form of relation converges to one as ∞→N ; the speed of convergence 



L. KLUKOWSKI 

 

26

guarantees the good efficiency of the estimator. In the case of binary comparisons, the 
following relation is true: 

 
2

( , )( , )* 1 1( ) 1 2exp 2 { , , ), 0,
2 2

meme
bN bNP N e pW W δ τ δ

⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎛ ⎞< ≥ − − − ∈ ∈⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎝ ⎠
AA � A   (24) 

The properties (I)–(V) are the basis for the construction of the estimators and indicate 
their consistency (the inequalities: ( )( )*( ) ( )N NE EW Wυ υ< AA �  and ( , )*( )me

NE Wυ <A ( , )( ),me
NE W υ
A�

convergence of the variances: ( , )*Var( ) 0,lim me
N

N
W υ

→∞
=A ( , )Var( ) 0,lim me

N
N

W υ
→∞

=A�  and the ine-

qualities: ( )( )*( )N NP W Wυ υ< AA � , ( , )( , )*( )).meme
N NP W Wυ υ< AA �  Investigation of the precision of es-

timators and the speed of their convergence to the actual form of the relationship re-
quires simulation. One important conclusion from such a simulation experiment is the 
confirmation of the higher efficiency of the estimator based on the total number of 
differences, for the values of N and δ examined. 

Properties (I)–(V), proved for both estimators and both types of comparisons, are 
original, theoretical results of the author. Simulations are a valuable complement to 
the theoretical results. 

4. Examination of the properties of the estimators 
of a preference relation using simulations  

4.1. Purpose of the simulations 

The purpose of the simulations is to determine the distributions of the errors of 
both estimators considered in the case of the preference relation. These distributions 
allow us not only to evaluate the precision of estimates but also to determine parame-
ters for the comparisons, in particular their number N, guaranteeing the required preci-
sion of estimates. They are also necessary for the validation of estimates and testing 
hypotheses about the form of a relation. 

4.2. Parameters of the simulations 

The simulations were carried out for three forms of relation, with the use of the 
following parameters. 

• The set X contains nine elements; 
• three forms of relation: 
– relation with nine subsets (linear order): 1 9{ }, ..., { }x x  (n = 9), 
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– relation with six subsets: 1 2 3 4 5 6 7 8 9{ }, { , }, { },{ , }, { },{ , }x x x x x x x x x  (n = 6), 
– relation with three subsets: },,,{},,,{},,{ 987654321 xxxxxxxxx  (n = 3); 
• binary comparisons with probability functions: 

( ) ( )( ( , ) ( , )) ,p p
i j i j ijbbkP g x x x xT α= =  ( ) ( ) 1( ( , ) ( , ))

2
α−≠ = ijp p

i j i jbbkP g x x x xT  

with three values of αij: 0.85, 0.90, 0.95 for all ,i j  (typical levels in statistical tests); 
• multivalent comparisons with probability functions: 

( ) ( )( ( , ) ( , ))p p
i j i j ijkP g x x x xT μμ α= =  

( ) ( )
( )

1
( ( , ) ( , ) )

2
ijp p

i j i jk d
ij

P lg x x x xT
L

μμ
α−

− = − =  

( ) ( )( )( ( , ) ( 1); 1, ..., )μ= + − = − −d dp
ij iji j m lx xL T L  

( ) ( )
( )

1
( ( , ) ( , ) )

2
ijp p

i j i jk u
ij

P lg x x x xT
L

μμ
α−

− = =  

( ) ( )( )( 1 ( , ); 1, ..., )u up
ij iji jm lx xL T Lμ= − − =  

with three values of αij: 0.3334; 0.4167; 0.5000 (i.e. approximately 4/12, 5/12, 6/12) 
for all , ;i j  

• number N of comparisons of each pair: 1, 3, 5, 7, 9. 
The total number of cases analyzed equals 90 for each type of probability func-

tion, i.e.: three forms of relation, three forms of distributions of errors in comparisons, 
five values of the number of comparisons N, using both estimators. Each case has been 
simulated 100 or 200 times, using a random number generator. The book by Klu-
kowski [35] also considers the case of error distributions with the property that in-
creasing values of errors correspond to decreasing probabilities. 

4.3. Results of the simulations. Conclusions 

The results of the simulations have been analyzed in detail by Klukowski [35]. At 
this point, some examples of the results from the simulations (Tables 1, 2) and the 
basic conclusions are presented. 
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Table 1. The efficiency of estimators based on binary comparisons, n = 9 subsets  

Number of 
comparisons

N 
Quantities 

Probability of correct comparison 
0.85 0.90 0.95 

Sum. Median. Sum. Median. Sum. Median. 

1 
% CR 
% of CRM
AE 

20 
26 

4.20 

20 
26 

4.20 

29 
38 

2.78 

29 
38 

2.78 

49 
60 

1.41 

49 
60 

1.41 

3 
% CR 
% of CRM
AE 

53 
56 

0.88 

49 
55 

1.13 

77 
78 

0.38 

75 
80 

0.45 

97 
97 

0.03 

96 
97 

0.03 

5 
% CR 
% of CRM
AE 

82 
82 

0.28 

82 
82 

9.30 

92 
92 

0.11 

92 
92 

0.11 

99 
99 

0.01 

99 
99 

0.01 

7 
% CR 
% of CRM
AE 

91 
91 

0.10 

91 
91 

0.10 

97 
97 

0.03 

97 
97 

0.03 

100 
100 
0 

100 
100 
0 

9 
% CR 
% of CRM
AE 

95 
95 

0.05 

95 
95 

0.05 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

Computations by the author. % CR is the fraction of errorless singular es-
timates, % of CRM – the fraction of errorless estimates taking into account 
multiple solutions, AE – average estimation error, taking into account multiple 
solutions. 

Table 2. The efficiency of estimators  
 based on multivalent comparisons, n = 9 subsets 

Number of
comparisons

N 
Quantity 

Probability of correct comparison: 
0.3334 0.4167 0.5000 

Sum. Median. Sum. Median. Sum. Median. 

1 
% of CR 
% of CRM 
AE 

17 
32 

43.68

17 
32 

43.68 

31 
51 

27.70

31 
51 

27.70 

60 
78 

12.50

60 
78 

12.50 

3 
% of CR 
% of CRM 
AE 

78 
85 

6.09 

58 
74 

12.35 

91 
95 

1.11 

79 
93 

3.39 

97 
100 
0.26 

92 
98 

1.19 

5 
% of CR 
% of CRM 
AE 

95 
98 

0.72 

71 
93 
4.0 

99 
100 
0.08 

97 
100 
0.20 

100 
100 
0 

100 
100 
0 

7 
% of CR 
% of CRM 
AE 

98 
99 

0.12 

92 
99 

0.55 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

9 
% of CR 
% of CRM 
AE 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

100 
100 
0 

Computations by the author. Denotations the same as in Table 1. 
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General conclusions about the precision of estimators based on binary compari-
sons are as follows: 

• Both estimators guarantee acceptable precision of estimation in the case when 
the probability δ does not exceed a typical significance level in statistical tests, i.e. 

0.10,δ ≤ and the number of comparisons is greater or equal three, N ≥ 3. 
• An increase in the number of comparisons N indicates a rapid increase in the 

precision of the estimates, reflecting the exponential form of inequality (22). 
• The average errors of the estimator based on the total number of differences are 

significantly smaller than for the estimator based on medians; these differences are not 
significant when both estimators guarantee errorless estimates with the probability 
greater than 0.95. 

• The estimator based on medians requires at least N + 2 comparisons to obtain 
a precision similar to the estimator based on the total number of differences with N 
comparisons; it guarantees acceptable results in the cases: (i) α ≥ 0.95 and N ≥ 3 and 
(ii) α ≥ 0.85 and N ≥ 5; it also generates a greater number of multiple estimates. 

• The best precision of estimation is achieved for the relation with three subsets. 
General conclusions about the precision of estimators based on multivalent com-

parisons are as follows: 
• Acceptable precision of estimation is achieved in the case when the probability 

of errorless comparisons is approximately equal to 1/2 of the probability of errorless 
binary comparison, i.e.: 4/12, 5/12, 6/12, in the case of multiple comparisons (N > 1). 

• An estimator based on the sum of differences guarantees a significantly higher 
concentration of errors around zero than the estimator based on medians. 

• An estimator based on medians requires at least two more comparisons than the 
one based on differences to achieve the same accuracy. 

• The best precision is achieved for n = m (for binary comparisons the worst re-
sults were obtained in that case). 

• An increase in the number of comparisons results in a rapid increase in the pre-
cision of estimates and concentration of the frequencies of errors around zero. 

The results of the simulation confirm good properties of the estimators proposed. 
The highest level of precision is guaranteed by the estimator based on the sum of dif-
ferences between comparisons and the form of the relation based on multivalent com-
parisons. Examination of relations in sets with a greater number of elements (m > 9), 
shows that the above properties remain valid. 

5. Validation of estimates 

The estimators of the relations considered were constructed under assumptions  
A1–A3; the first of them states the existence of the relation in the set X, the other two 
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concern properties of the distributions of errors in comparisons. These assumptions 
can be verified with the use of statistical tests; a positive verification validates the 
estimates obtained and guarantees high reliability of the estimators. 

Firstly, we checked the assumptions about the errors in comparisons, i.e. unimodality 
and independence of comparisons of the same pair and the mode and median being equal 
to zero. For this purpose, well known tests can be applied [9, 17, 43–45] 
They are based on comparisons ( )

,1( , ),υ
A

i jg x x ..., ( ) ( , ),i jNg x xυ
A  ( { , },υ μ∈ b , ,mi j R∈

{ , , })e pτ∈A  or differences: ( ) ( )ˆ( , ) ( , )i j i jkg x x x xTυυ −A A or ( ) ( )( , ) ( , ),i j i jkg x x x xT υυ −A A�

( 1, ..., )k N= . 
The verification of the existence of the relation can only be made after positive 

verification of the assumptions about errors in comparisons. The hypothesis to be test-
ed states the existence of a relation, the alternative states either the equivalence of all 
the elements, randomness of comparisons or some other data structure. Such tests can 
be based on the values of the criterion functions (19), (20); large realizations of these 
functions indicate a significant difference between the form of the relation and com-
parisons and thus imply rejecting the null-hypothesis. Critical values for such tests can 
be obtained based on simulations. 

It should be noted that many various tests can be used to verify the existence of 
a particular type of relation (see also [7, 11]. For example, in the case of the preference 
relation, we can verify the consistency of the ranks of elements obtained based on 
sequential subsets of comparisons: ( )

,1( , )i jg x xυ
A , ..., ( ) ( , )i jNg x xυ

A  ( , ).mi j R∈  
Tests for distinguishing between the tolerance and equivalence relations and tests 

for distinguishing between the strong and weak form of the preference relation  
[35, 36] can also be used to validate the results of estimation. 

6. Algorithms for solving optimization problems 

Minimization of the functions (19), (20) is a difficult problem because of huge 
(but known) computational cost. Currently, there exist algorithms for binary compari-
sons ([7] Chapt. 2, [12]) based on dynamic programming and branch and bound meth-
ods. Some of them require a known number of subsets n and, additionally, are effi-
cient in the case of sets with a moderate number of elements m. In the case of sets 
which do not exceed several elements, complete enumeration can be used. Large sets 
require the application of heuristic algorithms, e.g. genetic [10], neuronal networks, 
random search [42], swarm intelligence [1].  

In the case of multivalent comparisons, there are no algorithms to derive the exact 
solution, except complete enumeration. In general, approximate algorithms have to be 
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used unless m is small. One may expect that the application of new, efficient quantum 
computers will enable us to find exact solutions of problems when sets are large. 

7. Conclusions – new results of the work 

Original results have been presented by the author in the subject of estimation of 
tsuch relations as equivalence, tolerance and preference over a finite set based on mul-
tiple pairwise comparisons with random errors. 

The main results may be summarized as follows [42]: 
• Two types of data have been taken into account: binary and multivalent. Binary 

data reflect qualitative features of the compared pairs of elements, i.e. equivalence or 
direction of preference within a pair, while multivalent data reflect quantitative fea-
tures, i.e. the number of subsets including both elements (tolerance relation) or dis-
tance between elements in the form of difference between ranks (preference relation). 

• The assumptions concerning errors in comparisons are weaker than those com-
monly used in the literature, in particular: 

– the expected values of errors in comparisons can differ from zero, 
– distributions of errors in comparisons may be unknown, 
– comparisons including the same element can be correlated. 
Therefore, the algorithms proposed can be used when other algorithms are not ap-

plicable (may produce incorrect results). 
• Two estimators have been examined; the former one is based on the sum of dif-

ferences between the form of the relation and the data from the comparisons, the latter 
is based on differences between the form of the relation and the median from compari-
sons of each pair. The estimators have a simple intuitive form, i.e. are solutions to the 
appropriate optimization problem, and have analytical properties guaranteeing good 
efficiency, especially in the case of multiple comparisons of each pair. The properties 
indicate, in particular, that the efficiency of the first estimator is better, but involves 
a higher computational cost. The median estimator requires lower computational cost 
when applying optimization algorithms, and is more robust (robustness is an important 
property in the case of multivalent comparisons). 

• The analytical properties of the estimators have been complemented with the re-
sults of a simulation study. This allows the determination of the values of parameters, 
especially the number of comparisons N, guaranteeing the required precision of esti-
mates; a sufficiently large N guarantees that the probability of an errorless result is 
close to one. The simulation approach also allows estimation of the probability of an 
errorless solution in the case when the distribution of errors in comparisons is un-
known. Such distributions are replaced by a class of boundary distributions – quasi-
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uniform distributions, proposed by the author. The simulation study indicates the ex-
cellent efficiency of multivalent estimators – an original concept of the author; error-
less estimates can be obtained with probability close to one for moderate N when the 
probability of errorless comparison is lower than 1/2. 

• The properties of estimates can be thoroughly validated; validation encompasses 
verification of the existence of the relation and the assumptions regarding the errors in 
comparisons. These assumptions can be verified with the use of known tests and the 
methods proposed by the author. The establishment of the existence of the relation can 
also be based on a simulation approach. It is possible, as well, to choose the relation 
type – equivalence or tolerance, and the type of preference relation – strict or weak. 
Therefore, the approach has features of data mining techniques. 

• The precision of the estimators, examined in the simulation study [35, 36] is based 
on measures described in the paper: (i) frequency of errorless estimation, (ii) average 
absolute, one-dimensional error, and (iii) distribution of the average absolute, one-
dimensional error. One-dimensional error is an appropriate measure of the difference 
between the estimate and the relation; however, multi-dimensional error can also be 
the subject of analysis, especially in a graphical form.  

• The approach proposed allows combining comparisons obtained from various 
sources, e.g. statistical tests, experts, neural networks. It is also possible to combine 
binary and multivalent comparisons and to apply two-stage estimators, based, in the 
first stage, on binary comparisons, and in the second stage – on multivalent compari-
sons obtained from the first stage.  

• The estimates are obtained based on solutions to optimization problems. They 
can be solved with the use of complete enumeration of the feasible set or heuristic 
algorithms. The first approach requires fast processors, which are currently available. 
Heuristic algorithms can be based on random search, genetic algorithms, swarm intel-
ligence, or hierarchical agglomeration algorithms. 

• The approach presented will be developed in the following directions: statistical 
learning, estimation of more complex data structures (e.g. hierarchical), multidimen-
sional (multi-criteria) pairwise comparisons, etc. An important field is also constituted 
by application of the estimators and tests developed. 

To summarize, a comprehensive method has been presented for estimation and 
validation of the results based on algorithms from: statistics, optimization and simula-
tion. It is a significant contribution to the areas of: mathematical statistics, statistical 
computer systems and data mining. It provides results with good practical properties, 
i.e. non-restrictive assumptions, high precision and reliability. The methodology can 
be developed in many directions, in particular: more complex data structures (e.g. 
hierarchical), multidimensional comparisons and statistical learning [15, 40]. Another 
important area are applications, especially in the field of financial engineering. 
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